首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the distribution and diversity of members of the recently identified bacterial kingdom Acidobacterium, members of this kingdom present in 43 environmental samples were surveyed by PCR amplification. A primer designed to amplify rRNA gene sequences (ribosomal DNAs [rDNAs]) from most known members of the kingdom was used to interrogate bulk DNA extracted from the samples. Positive PCR results were obtained with all temperate soil and sediment samples tested, as well as some hot spring samples, indicating that members of this kingdom are very widespread in terrestrial environments. PCR primers specific for four phylogenetic subgroups within the kingdom were used in similar surveys. All four subgroups were detected in most neutral soils and some sediments, while only two of the groups were seen in most low-pH environments. The combined use of these primers allowed identification of a novel lineage within the kingdom in a hot spring environment. Phylogenetic analysis of rDNA sequences from our survey and the literature outlines at least six major subgroups within the kingdom. Taken together, these data suggest that members of the Acidobacterium kingdom are as genetically and metabolically diverse, environmentally widespread and perhaps as ecologically important as the well-known Proteobacteria and gram-positive bacterial kingdoms.  相似文献   

2.
Within the last several years, molecular techniques have uncovered numerous 16S rRNA gene (rDNA) sequences which represent a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species. rDNA sequences of members of this novel crenarchaeotal group have been recovered from low- to moderate-temperature environments (−1.5 to 32°C), in contrast to the high-temperature environments (temperature, >80°C) required for growth of the currently recognized crenarchaeotal species. We determined the diversity and abundance of the nonthermophilic members of the Crenarchaeota in soil samples taken from cultivated and uncultivated fields located at the Kellogg Biological Station’s Long-Term Ecological Research site (Hickory Corners, Mich.). Clones were generated from 16S rDNA that was amplified by using broad-specificity archaeal PCR primers. Twelve crenarchaeotal sequences were identified, and the phylogenetic relationships between these sequences and previously described crenarchaeotal 16S rDNA sequences were determined. Phylogenetic analyses included nonthermophilic crenarchaeotal sequences found in public databases and revealed that the nonthermophilic Crenarchaeota group is composed of at least four distinct phylogenetic clusters. A 16S rRNA-targeted oligonucleotide probe specific for all known nonthermophilic crenarchaeotal sequences was designed and used to determine their abundance in soil samples. The nonthermophilic Crenarchaeota accounted for as much as 1.42% ± 0.42% of the 16S rRNA in the soils analyzed.  相似文献   

3.
Sediments contain an abundance of microorganisms. However, the diversity and distribution of microorganisms associated with sediments are poorly understood, particularly in lacustrine environments. We used banding patterns from denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequences to assess the structure of bacterial communities in the Holocene sediments of a meromictic lake in Minnesota. Cluster analysis of the DGGE banding patterns indicates that the early- and middle-Holocene samples group separately from the late-Holocene samples. About 79% of the recovered bacterial sequences cluster with the α-, β-, δ-, ɛ-, and γ- Proteobacteriaceae and Firmicutes. The remaining ∼21% lack cultured representatives. The taxonomic lineages of bacteria differ statistically among the early-, middle-, and late-Holocene samples, although the difference is smallest between early- and middle-Holocene samples. Early- and middle-Holocene samples are dominated by ɛ-Proteobacteriaceae, and late-Holocene samples are dominated by sequences from uncultured subphyla. We only recovered δ-Proteobacteriaceae in late-Holocene sediments and α- and γ- Proteobacteriaceae in late- and middle-Holocene sediments. Diversity estimates derived from early-, middle-, and late-Holocene clone libraries indicate that the youngest (late-Holocene) samples had significantly greater bacterial diversity than the oldest (early-Holocene) samples, and the middle-Holocene samples contained intermediate levels of diversity. The observed patterns of diversity may be caused by increased bacterial niche-partitioning in younger sediments that contain a greater abundance of labile organic matter than older sediments. D. M. Nelson and S. Ohene-Adjei contributed equally to this work  相似文献   

4.
Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the α-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11.  相似文献   

5.
Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the water column/sediment clade. At all three site types, AOA were always more abundant than β-AOB based on quantitative PCR of amoA genes. At some sites, we detected 109 AOA amoA gene copies g of sediment−1. Ratios of AOA to β-AOB varied over 2 orders of magnitude among sites and sampling dates. Nevertheless, abundances of AOA and β-AOB amoA genes were highly correlated. Abundance of 16S rRNA genes affiliated with Nitrosopumilus maritimus, Crenarchaeota group I.1b, and pSL12 were positively correlated with AOA amoA abundance, but ratios of amoA to 16S rRNA genes varied among sites. We also observed a significant effect of pH on AOA abundance and a significant salinity effect on both AOA and β-ΑΟΒ abundance. Our results expand the distribution of AOA to salt marshes, and the high numbers of AOA at some sites suggest that salt marsh sediments serve as an important habitat for AOA.Nitrification, the sequential oxidation of ammonia to nitrite and nitrate, is a critical step in the nitrogen cycle and is mediated by a suite of phylogenetically and physiologically distinct microorganisms. The recent discovery of ammonia oxidation among Archaea (17, 38) has led to a dramatic shift in the current model of nitrification and to new questions of niche differentiation between putative ammonia-oxidizing Archaea (AOA) and the more-well-studied ammonia-oxidizing Betaproteobacteria (β-AOB). Based on surveys of 16S rRNA genes and archaeal amoA genes, it is evident that AOA occupy a wide range of niches (10), suggesting a physiologically diverse group of Archaea. Additionally, in studies where AOA and β-AOB were both targeted, AOA were typically more abundant than their bacterial counterparts (19, 21, 42). However, there are reports of β-AOB outnumbering AOA in estuarine systems (6, 33), suggesting a possible shift in competitive dominance under certain conditions.Patterns of β-AOB diversity in estuaries have been well characterized and appear to be regulated by similar mechanisms within geographically disparate systems (4, 11, 32). However, AOA distribution and their role in nitrification relative to β-AOB remain to be determined. A few studies have begun to address this question in different estuaries, but no unifying patterns or mechanisms have emerged. Although β-AOB have been well studied along estuarine salinity gradients (1, 3, 4, 7, 11, 13, 22, 33, 39) and recent studies have begun to address AOA in estuaries (1, 6, 22, 32, 33), few have investigated β-AOB in salt marshes (9), and none has included AOA.In this study, we investigated the distribution and abundance of AOA and β-AOB based on the distribution and abundance of amoA genes in salt marsh sediments dominated by different types of vegetation. Although we equate the presence of archaeal amoA genes with the genetic potential to oxidize ammonia, we acknowledge the possibility that all Archaea that have amoA genes may not all represent functional ammonia oxidizers. Vegetation patterns of New England salt marshes are strongly correlated with marsh elevation and are controlled by a combination of interspecific competition and tolerance to physico-chemical stress (28). The dominant grasses of New England salt marshes are Spartina alterniflora and Spartina patens, which typically grow as pure stands. S. alterniflora is found in two phenotypically distinct but genetically identical forms, a tall and a short growth form (34). The tall S. alterniflora grows to heights of 1 to 2 m and is typically found at the edges of the marsh and along creek banks (SAT sites), while the short-form S. alterniflora may reach heights of only 30 cm and is found in sites (SAS sites) slightly higher on the marsh where soil drainage is limited and conditions are more reduced compared to SAT sites (14). Conversely, S. patens, due to its lower tolerance of salt and more reduced conditions, is found in sites (SP sites) highest on the marsh, in areas that receive less flooding (5). Because the marsh is subjected to daily tidal fluctuations, most sites experience periods of anoxia, the degree of which depends on the marsh elevation. We hypothesized that ammonia-oxidizing communities in areas dominated by different marsh grasses would reflect the different edaphic conditions associated with each type of grass, due to differences in vertical zonation in the marsh.  相似文献   

6.
In soils, bacteria are very abundant and diverse. They are involved in various agro-ecosystem processes such as the nitrogen cycle, organic matter degradation, and soil formation. Yet, little is known about the distribution and composition of bacterial communities through the soil profile, particularly in agricultural soils, as most studies have focused only on topsoils or forest and grassland soils. In the present work, we have used bar-coded pyrosequencing analysis of the V3 region of the 16S rRNA gene to analyze bacterial diversity in a profile (depths 10, 25, and 45 cm) of a well-characterized field of winter wheat. Taxonomic assignment was carried out with the Ribosomal Database Project (RDP) Classifier program with three bootstrap scores: a main run at 0.80, a confirmation run at 0.99, and a run at 0 to gain information on the unknown bacteria. Our results show that biomass and bacterial quantity and diversity decreased greatly with depth. Depth also had an impact, in terms of relative sequence abundance, on 81 % of the most represented taxonomic ranks, notably the ranks Proteobacteria, Bacteroidetes, Actinobacteridae, and Acidobacteria. Bacterial community composition differed more strongly between the topsoil (10 and 25 cm) and subsoil (45 cm) than between levels in the topsoil, mainly because of shifts in the carbon, nitrogen, and potassium contents. The subsoil also contained more unknown bacteria, 53.96 % on the average, than did the topsoil, with 42.06 % at 10 cm and 45.59 % at 25 cm. Most of these unknown bacteria seem to belong to Deltaproteobacteria, Actinobacteria, Rhizobiales, and Acidobacteria.  相似文献   

7.
Rhizosphere microorganisms in soils are important for plant growth. However, the importance of rhizosphere microorganisms is still underestimated since many microorganisms associated with plant roots cannot be cultured and since the microbial diversity in the rhizosphere can be influenced by several factors, such as the cropping history, biogeography, and agricultural practice. Here, we characterized the rhizosphere bacterial diversity of cucumber plants grown in soils covering a wide range of cucumber cropping histories and environmental conditions by using pyrosequencing of bacterial 16S rRNA genes. We also tested the effects of compost addition and/or bacterial inoculation on the bacterial diversity in the rhizosphere. We identified an average of approximately 8,883 reads per sample, corresponding to around 4,993 molecular operational taxonomic units per sample. The Proteobacteria was the most abundant phylum in almost all soils. The abundances of the phyla Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, and Verrucomicrobia varied among the samples, and together with Proteobacteria, these phyla were the six most abundant phyla in almost all analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Flavobacterium, Ohtaekwangia, Opitutus, Gp6, Steroidobacter, and Acidovorax. Overall, compost and microbial amendments increased shoot biomass when compared to untreated soils. However, compost addition decreased the bacterial α-diversity in most soils (but for three soils compost increased diversity), and no statistical effect of microbial amendment on the bacterial α-diversity was found. Moreover, soil amendments did not significantly influence the bacterial β-diversity. Soil organic content appeared more important than compost and microbial amendments in shaping the structure of bacterial communities in the rhizosphere of cucumber.  相似文献   

8.
The bacterial community structure in the Changjiang estuary was studied for comparison with future changes, related to the construction of the Three Gorges Dam. Population densities of bacteria in the surface water at station C1 estimated by CFU on marine agar plates and by DAPI direct count, were 2.8 x 10(4) ml(-1) and 4.2 x 10(5) ml(-1), respectively. Physicochemical properties of water, such as temperature and salinity, suggested that station C1 was affected by freshwater from the Changjiang River. Cluster analysis of the PCR-RFLP patterns obtained from 9 samples showed that the bacterial community structure at station C1 was different from the structure at the other stations. Bacterial diversity in the surface water at station C1 was studied based on the genotypes of the 250 clones of 16S rRNA, and on the phenotypes generated on Biolog GN plates for 70 isolates. Sequences of bacteria from two common marine groups, alpha- and gamma-Proteobacteria, were frequently observed. Some other divisions, including the beta-Proteobacteria, C/F/B group, low G+C gram positive, high G+C gram positive, chloroplasts, and relatives of Verrucomicrobia were also observed. The putative dominant species based on both genotype and phenotype analyses were close relatives of Alteromonas macleodii or Roseobacter spp. These results reflected the nutrient-rich environment at station C1.  相似文献   

9.
Sixty-two sample of rice from 29 countries were tested for presence of Pseudomonas avenae and 55 from 28 countries proved to be infected. The presence of the bacterial stripe pathogen constitutes the first report from these countries. Infection ranged from 1 to 75%. P avenae was identified by symptoms in the seedings and its identity confirmed serologically. The bacterium was found even in 8-year-old seed samples which had been stored at 5°C.  相似文献   

10.
Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs.  相似文献   

11.
There is a paucity of knowledge on microbial community diversity and naturally occurring seasonal variations in agricultural soil. For this purpose the soil microbial community of a wheat field on an experimental farm in The Netherlands was studied by using both cultivation-based and molecule-based methods. Samples were taken in the different seasons over a 1-year period. Fatty acid-based typing of bacterial isolates obtained via plating revealed a diverse community of mainly gram-positive bacteria, and only a few isolates appeared to belong to the Proteobacteria and green sulfur bacteria. Some genera, such as Micrococcus, Arthrobacter, and Corynebacterium were detected throughout the year, while Bacillus was found only in July. Isolate diversity was lowest in July, and the most abundant species, Arthrobacter oxydans, and members of the genus Pseudomonas were found in reduced numbers in July. Analysis by molecular techniques showed that diversity of cloned 16S ribosomal DNA (rDNA) sequences was greater than the diversity among cultured isolates. Moreover, based on analysis of 16S rDNA sequences, there was a more even distribution among five main divisions, Acidobacterium, Proteobacteria, Nitrospira, cyanobacteria, and green sulfur bacteria. No clones were found belonging to the gram-positive bacteria, which dominated the cultured isolates. Seasonal fluctuations were assessed by denaturing gradient gel electrophoresis. Statistical analysis of the banding patterns revealed significant differences between samples taken in different seasons. Cluster analysis of the patterns revealed that the bacterial community in July clearly differed from those in the other months. Although the molecule- and cultivation-based methods allowed the detection of different parts of the bacterial community, results from both methods indicated that the community present in July showed the largest difference from the communities of the other months. Efforts were made to use the sequence data for providing insight into more general ecological relationships. Based on the distribution of 16S rDNA sequences among the bacterial divisions found in this work and in literature, it is suggested that the ratio between the number of Proteobacteria and Acidobacterium organisms might be indicative of the trophic level of the soil.  相似文献   

12.
The bacterial distribution, and its relationship with climate and environment factors were investigated in the snowcover at Tianshan Number 1 Glacier. The results showed that psychrotrophs were the preponderant bacteria in pit samples, though they were not the dominant species in the new fallen snow. The quantity and diversity of the cultivable bacteria decreased with the passage of time, indicating that the bacterial community acclimatized to low temperature by changing its structure. During this time, the peak number of the cultivable bacteria was associated with dirt layers, indicating that the bacterial input came with dust. Concurrently, the quantity and diversity of the cultivable bacteria showed a trend of variation similar to that shown by the δ18O values and the soluble ion concentrations, indicating that the bacterial distribution was related to both temperature and the amount of dust transported onto the glacier. Phylogentic analyses of 16S rRNA indicated that all the isolates fell into six categories: α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria, high G+C gram-positive bacteria, and low G+C gram-positive bacteria. In the snow pit, the abundance of the CFB group bacteria (mainly of the genus Flavobacterium) decreased from 55.5% to 1.49% with age, and fluctuated similar to the ion concentrations and the δ18O value. Meanwhile the α-Proteobacteria (mainly of the genus Brevundimonas) increased from 0.9% to 88.1%, indicating that Brevundimonas was the dominant psychrotroph in the study area, whose abundance varied inversely compared to the above-mentioned chemical properties. All the results suggest that bacterial abundance and diversity vary with climate and the physical chemical microenvironment. The pattern of bacterial distribution could be a biological index for the record of climate and environment change in the Tianshan Number 1 Glacier.  相似文献   

13.
Prozorov  A. A. 《Microbiology》2001,70(5):501-512
The rearrangement of bacterial chromosomes induced by intragenomic recombination is considered. The role of stochastic and programmed genome rearrangements in bacterial adaptation to the environment and in cell differentiation is discussed.  相似文献   

14.
15.
Assessment of the Bacterial Diversity in Fenvalerate-Treated Soil   总被引:4,自引:0,他引:4  
The impact of the pesticide fenvalerate on the diversity of the bacterial community in soil was investigated in this study. After treatment with 0.1, 0.5 or 1.0 mg fenvalerate g–1 soil in three soils and incubation for a 40-day period, the changes in diversity were monitored by two different methods. The cultivable heterotrophic diversity was investigated by colony morphology on solid LB medium. Genetic diversity was measured as bands on denaturing gradient gel electrophoresis (DGGE) gels by total genomic DNA extraction and purification, PCR-amplification of bacterial 16S rDNA fragments. The Shannon–Wiener index of diversity (H), richness (S) and evenness (E H) were used to measure changes in the bacterial community in the soils. The results of the cultivable heterotrophic diversity and genetic diversity showed that there was an obvious decrease in diversity due to the application of fenvalerate to the soils, and the different amounts added had different impacts on the diversity. Bands appearing to be either enhanced or inhibited as a result of the fenvalerate treatments were excized and sequenced. Sequencing of excized DGGE bands indicated that application of fenvalerate had an obvious impact on several Pseudomonas spp., or Xanthomonas campestrisor Streptomyces avermitilis. This revealed that microbial community changes can occur due to the application of fenvalerate to soil.  相似文献   

16.
We characterized, at millimeter resolution, bacterial biomass, diversity, and vertical stratification of biological soil crusts in arid lands from the Colorado Plateau. Microscopic counts, extractable DNA, and plate counts of viable aerobic copiotrophs (VAC) revealed that the top centimeter of crusted soils contained atypically large bacterial populations, tenfold larger than those in uncrusted, deeper soils. The plate counts were not always consistent with more direct estimates of microbial biomass. Bacterial populations peaked at the immediate subsurface (1–2 mm) in light-appearing, young crusts, and at the surface (0–1 mm) in well-developed, dark crusts, which corresponds to the location of cyanobacterial populations. Bacterial abundance decreased with depth below these horizons. Spatially resolved DGGE fingerprints of Bacterial 16S rRNA genes demonstrated the presence of highly diverse natural communities, but we could detect neither trends with depth in bacterial richness or diversity, nor a difference in diversity indices between crust types. Fingerprints, however, revealed the presence of marked stratification in the structure of the microbial communities, probably a result of vertical gradients in physicochemical parameters. Sequencing and phylogenetic analyses indicated that most of the naturally occurring bacteria are novel types, with low sequence similarity (83–93%) to those available in public databases. DGGE analyses of the VAC populations indicated communities of lower diversity, with most types having sequences more than 94% similar to those in public databases. Our study indicates that soil crusts represent small-scale mantles of fertility in arid ecosystems, harboring vertically structured, little-known bacterial populations that are not well represented by standard cultivation methods.  相似文献   

17.
Abstract

High-throughput sequencing approach of the 16S rRNA gene was employed to evaluate the bacterial diversity inhabit in melted water, snow, soil, and rocks samples at the lower altitudes of the Laohugou glacial environment. Bioinformatics tools were used to process millions of Illumina reads for alpha and beta diversities of bacterial communities. The diversity indices such as Chao, Shannon, and Simpson were different in the collected samples and solid samples (soil and rocks) showed higher taxon richness and evenness. Taxonomic diversity was unexpectedly higher and the major portion of sequences was assigned to Proteobacteria, Actinobacteria, and Acidobacteria. Higher variation in community structure was reported at the class level and Alphaproteobacteria was dominant. The solid niches were occupied by a higher number of phyla compared with liquid. The physicochemical variables acted as spatial gradients and associated with the bacterial structural communities of the glacial ecosystem. Findings showed that both Proteobacteria and Actinobacteria in solid samples influenced the bacterial community structure in downstream liquid samples. Interestingly, the metagenomic biomarkers were higher in liquid samples. This study provides precious datasets to understand the bacterial community in a better way under the influence of spatial, physical and environmental factors.  相似文献   

18.
19.

Background

Previous studies of infant fecal samples have failed to clarify the role of gut bacteria in the pathogenesis of NEC. We sought to characterize bacterial communities within intestinal tissue resected from infants with and without NEC.

Methods

26 intestinal samples were resected from 19 infants, including 16 NEC samples and 10 non-NEC samples. Bacterial 16S rRNA gene sequences were amplified and sequenced. Analysis allowed for taxonomic identification, and quantitative PCR was used to quantify the bacterial load within samples.

Results

NEC samples generally contained an increased total burden of bacteria. NEC and non-NEC sample sets were both marked by high inter-individual variability and an abundance of opportunistic pathogens. There was no statistically significant distinction between the composition of NEC and non-NEC microbial communities. K-means clustering enabled us to identify several stable clusters, including clusters of NEC and midgut volvulus samples enriched with Clostridium and Bacteroides. Another cluster containing both NEC and non-NEC samples was marked by an abundance of Enterobacteriaceae and decreased diversity among NEC samples.

Conclusions

The results indicate that NEC is a disease without a uniform pattern of microbial colonization, but that NEC is associated with an abundance of strict anaerobes and a decrease in community diversity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号