首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown the flavodoxin from Azotobacter vinelandii (strain OP, Berkeley) to contain a covalently bound disubstituted phosphate residue [Edmondson & James (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3786-3789]. Phosphorylation of the protein in vivo was investigated by the addition of [32P]phosphate to cells grown under N2-fixing conditions, under conditions of nif-gene repression and under conditions of nif-gene de-repression. Rocket immunoelectrophoresis of cell extracts showed an approx. 5-fold decrease in the concentration of flavodoxin expressed in cells grown in the presence of NH4+ as compared with those grown under N2-fixing conditions. A similar increase in flavodoxin concentration was observed on nif-gene de-repression. Incorporation of [32P]phosphate occurs only into newly synthesized flavodoxin, as observed on SDS/PAGE of immunoprecipitates of cell extracts. Western blots demonstrated no observable precursor forms of flavodoxin. These data provide conclusive evidence for the phosphorylation of Azotobacter strain OP flavodoxin in vivo and suggest that the covalently bound phosphate residue does not exchange with cellular phosphate pools. Thus the role of this phosphodiester cross-link is proposed to be structural rather than regulatory.  相似文献   

2.
The effects of the intracellular energy balance and adenylate pool composition on N2 fixation were examined by determining changes in the energy charge (EC) and the ADP/ATP (D/T) ratio of cells in chemostat and batch cultures of Clostridium pasteurianum, Klebsiella pneumoniae, and Azotobacter vinelandii. When cells of C. pasteurianum, K. pneumoniae, and A. vinelandii in sucrose-limited chemostats were examined, in all cases the EC increased greater than or equal to 15% when the nitrogen source was switched from N2 to NH3 and decreased greater than or equal to 15% when the nitrogen source was switched from NH3 to N2. The D/T ratio of the same cultures decreased greater than or equal to 70% when they were switched from N2 to NH3. In such cultures the adenylate pools remained constant when the cells were grown on either NH3 or N2. In nitrogen (NH3)-limited cultures, the adenylate pool was two- to threefold higher than the adenylate pool in sucrose-limited cultures, and the nitrogenase content of such cells was two- to threefold greater than the nitrogenase content of sucrose-limited N2-fixing cells. The EC and D/T ratio of cells from batch cultures of C. pasteurianum growing on NH3 in the presence of N2 were 0.82 and 0.83, respectively, but when the NH3 was consumed and the cells were switched to a nitrogen-fixing metabolism, the EC and D/T ratio changed to 0.70 and 0.90, respectively. Conversely, when NH3 was added to N2-fixing cultures the EC and D/T ratio changed within 1.5 h the EC and D/T ratio of NH3-grown cells. The nitrogen content of N2-fixing cells to which NH3 was added decreased at a rate greater could be accounted for by cell growth in the absence of further synthesis. This decay of nitrogenase activity (with a half-life about 1.2 to 1.4 h) suggests that some type of inactivation of nitrogenase occurs during repression. The nitrogenase of whole cells was estimated to be operating at about 32% of its theoretical maximum activity during steady-state N2-fixing conditions. Similarities in the data from chemostat and batch cultures of both aerobic and anaerobic N2-fixing organisms suggest that low EC and high D/T ratio are normal manifestations of an N2-fixing physiology.  相似文献   

3.
The growth constant and Y (sucrose) (grams of cells per mole of sucrose) for NH(3)-grown cultures of Clostridium pasteurianum were 1.7 times those of N(2)-grown cultures, whereas the rate of sucrose utilized per gram of cells per hour was similar for both conditions. The Y (sucrose) of chemostat cultures grown on limiting NH(3) under argon at generation times equal to those of N(2)-fixing cultures was less than that of cultures grown on excess NH(3), but cells of NH(3)-limited cultures contained the N(2)-fixing system in high concentration. The concentration of the N(2)-fixing system in whole cells, when measured with adenosine triphosphate (ATP) nonlimiting, was more than twofold greater than the amount needed for the N(2) actually fixed. Thus, energy production from sucrose, and not the concentration of the N(2)-fixing system nor the maximal rate at which N(2) could be fixed, was the limiting factor for growth of N(2)-fixing cells. Either NH(3) or some product of NH(3) metabolism partially regulated the rate of sucrose metabolism since, when cultures fixing N(2), growing on NH(3), or growing on limiting NH(3) in the absence of N(2) were deprived of their nitrogen source, the rate of sucrose catabplism decreased. Calculations showed that the rate of ATP production was the growth rate-limiting factor in cells grown on N(2), and that the increased sucrose requirement of N(2)-fixing cultures in part reflected the energy demand of N(2) fixation. Calculations indicated that whole cells require about 20 moles of ATP for the fixation of 1 mole of N(2) to 2 moles of NH(3).  相似文献   

4.
The N(2)-fixing system of Clostridium pasteurianum operates under regulatory controls; no activity is found in cultures growing on excess NH(3). The conditions which are necessary for the synthesis and function of this system were studied in whole cells by using acetylene reduction as a sensitive assay for the presence of the N(2)-fixing system. Nitrogenase of N(2)-fixing cultures normally can fix twice as much N(2) as is needed to maintain the growth rate. When cultures that have grown for four or more generations on NH(3) exhaust NH(3) from the medium, a diauxic lag of about 90 min ensues before growth is resumed on N(2). Neither N(2)-fixing nor acetylene reduction activity can be detected before growth is resumed on N(2). N(2) is not a necessary requirement for this synthesis since under argon that contains less than 10(-8)m N(2), the N(2)-fixing system is made. If NH(3) is added to N(2)-dependent cultures, synthesis of the enzyme system is abruptly stopped, but the enzyme already present remains stable and functional for at least 6 hr (over three generations). Cultures grown under argon in a chemostat controlled by limiting ammonia have derepressed nitrogenase synthesis. If the argon is removed and replaced by N(2), partial repression of nitrogenase occurs.  相似文献   

5.
Feedback inhibition of nitrogenase.   总被引:8,自引:4,他引:4       下载免费PDF全文
No inhibition of nitrogenase activity by physiological levels of NH4+ or carbamyl phosphate was observed in extracts of Azotobacter vinelandii. All of the 15N2 reduced by cultures which received no NH4+ was found in the cells. By contrast, more than 95% of the 15N2 reduced by cultures which had been given NH4+ was found in the medium. Failure to examine the culture medium would lead to the erroneous conclusion that N2 fixation is inhibited by NH4+. Nitrogenase in a derepressed mutant strain of A. vinelandii was fully active in vivo in the presence of NH4+. The addition of NH4Cl to N2-fixing cultures resulted in no decrease in the N2-reducing activity of intact cells of Klebsiella pneumoniae or Clostridium pasteurianum and only a small (15%) decrease in A. vinelandii. Therefore, no significant inhibition of nitrogenase by NH4+ or metabolites derived from NH4+ exists in A. vinelandii, K. pneumoniae, or C. pasteurianum.  相似文献   

6.
The amino acid sequence of a group II flavodoxin, the Azotobacter vinelandii flavodoxin has been determined. The FMN-redox protein was shown to exist as a single polypeptide chain and to contain 179 amino acids. Despite the rather low amino acid sequence homology with the other flavodoxins sequenced, it is concluded that sequences of the group I and group II flavodoxins are homologous. The major differences between the group I and group II flavodoxins appears to be a lengthening in the C-terminal region in the group II flavodoxins.  相似文献   

7.
The plastidic class I and cytosolic class II aldolases of Euglena gracilis have been purified to apparent homogeneity. In autotrophically grown cells, up to 81% of the total activity is due to class I activity, whereas in heterotrophically grown cells, it is only 7%. The class I aldolase has been purified to a specific activity of 20 units/mg protein by anion-exchange chromatography, affinity chromatography, and gel filtration. The native enzyme (molecular mass 160 kD) consisted of four identical subunits of 40 kD. The class II aldolase was purified to a specific activity of 21 units/mg by (NH4)2SO4 fractionation, anion-exchange chromatography, chromatography on hydroxylapatite, and gel filtration. The native enzyme (molecular mass 80 kD) consisted of two identical subunits of 38 kD. The Km (fructose-1,6-bisphosphate) values were 12 [mu]M for the class I enzyme and 175 [mu]M for the class II enzyme. The class II aldolase was inhibited by 1 mM ethylenediaminetetraacetate (EDTA), 0.8 mM cysteine, 0.5 mM Zn2+, or 0.5 mM Cu2+. Na+, K+, Rb+, and NH4+ (but not Li+ or Cs+) enhanced the activity up to 7-fold. After inactivation by EDTA, the activity could be partially restored by Mn2+, Cu2+, or Co2+. A subclassification of class II aldolases is proposed based on (a) activation/inhibition by Cys and (b) activation or not by divalent ions.  相似文献   

8.
In Klebsiella pneumoniae, Mo accumulation appeared to be coregulated with nitrogenase synthesis. O2 and NH+4, which repressed nitrogenase synthesis, also prevented Mo accumulation. In Azotobacter vinelandii, Mo accumulation did not appear to be regulated Mo was accumulated to levels much higher than those seen in K. pneumoniae even when nitrogenase synthesis was repressed. Accumulated Mo was bound mainly to a Mo storage protein, and it could act as a supply for the Mo needed in component I synthesis when extracellular Mo had been exhausted. When A. vinelandii was grown in the presence of WO2-(4) rather than MoO2-(4), it synthesized a W-containing analog of the Mo storage protein. The Mo storage protein was purified from both NH+4 and N2-grown cells of A. vinelandii and found to be a tetramer of two pairs of different subunits binding a minimum of 15 atoms of Mo per tetramer.  相似文献   

9.
Inoculated and non-inoculated seedlings of maize were grown in fertile clayloam soils of Egypt and Belgium under subtropical conditions provided in a greenhouse. Acetylene-reducing activity and microbial counts were determined during a period ranging from 6 to 12 weeks after sowing. Irrespective of soil origin, N(2)-fixing spirilla and Azotobacter were common under maize cultivation. Inoculation resulted in a transitional increase in their numbers at early stages of growth. Nitrogenase activity was not detected in the rhizosphere of young plants. The maximum activities measured (81 to 1,436 nmol of C(2)H(4) g h) occurred close to the 50 to 70% silking stage. Inoculation with N(2)-fixing spirilla, particularly in Nile Delta soil, doubled the amount of N(2) fixed in a late period of growth (12 weeks), whereas inoculation with Azotobacter had no noticeable effect.  相似文献   

10.
Flavodoxin in the hydroquinone state acts as an electron donor to nitrogenase in several nitrogen-fixing organisms. The mid-point potentials for the oxidized-semiquinone and semiquinone-hydroquinone couples of flavodoxins isolated from facultative anaerobe Klebsiella pneumoniae (nifF-gene product, KpFld) and the obligate aerobe Azotobacter chroococcum (AcFld) were determined as a function of pH. The mid-point potentials of the semiquinone-hydroquinone couples of KpFld and AcFld are essentially independent of pH over the range pH 7-9, being -422 mV and -522 mV (normal hydrogen electrode) at pH 7.5 respectively. The mid-point potentials of the quinone-semiquinone couples at pH 7.5 are -200 mV (KpFld) and -133 mV (AcFld) with delta Em/pH of -65 +/- 4 mV (KpFld) and -55 +/- 2 mV (AcFld) over the range pH 7.0-9.5. This indicates that reduction of the quinone is coupled to protonation to yield a neutral semiquinone. The significance of these values with respect to electron transport to nitrogenase is discussed. The amino acid compositions, the N- and C-terminal amino acid sequences and the u.v.-visible spectra of KpFld and AcFld were determined and are compared with published data for flavodoxins isolated from Azotobacter vinelandii.  相似文献   

11.
Frankia spp. are filamentous actinomycetes that fix N2 in culture and in actinorhizal root nodules. In combined nitrogen-depleted aerobic environments, nitrogenase is restricted to thick-walled spherical structures, Frankia vesicles, that are formed on short stalks along the vegetative hyphae. The activities of the NH4(+)-assimilating enzymes (glutamine synthetase [GS], glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase) were determined in cells grown on NH4+ and N2 and in vesicles and hyphae from N2-fixing cultures separated on sucrose gradients. The two frankial GSs, GSI and GSII, were present in vesicles at levels similar to those detected in vegetative hyphae from N2-fixing cultures as shown by enzyme assay and two-dimensional polyacrylamide gel electrophoresis. Glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase activities were restricted to the vegetative hyphae. Vesicles apparently lack a complete pathway for assimilating ammonia beyond the glutamine stage.  相似文献   

12.
The involvement of the cytoplasmic membrane in electron transport to nitrogenase has been studied. Evidence shows that nitrogenase activity in Azotobacter vinelandii is coupled to the flux of electrons through the respiratory chain. To obtain information about proteins involved, the changes occurring in A. vinelandii cells transferred to nitrogen-free medium after growth on NH4Cl (depression of nitrogenase activity) were studied. Synthesis of the nitrogenase polypeptides was detectable 5 min after transfer to nitrogen-free medium. No nitrogenase activity could be detected until t = 20 min, whereupon a linear increase of nitrogenase activity with time was observed. Synthesis of nitrogenase was accompanied by synthesis of flavodoxin II and two membrane-bound polypeptides of Mr 29,000 and 30,000. Analysis with respect to changes in membrane-bound NAD(P)H dehydrogenase activities revealed the induction of an NADPH dehydrogenase activity, which was not detectable in membranes isolated from cells grown in the presence of NH4OAc. This induced activity was associated with the appearance of a polypeptide of Mr 29,000 in the NADPH dehydrogenase complex.  相似文献   

13.
1. The assimilatory nitrite reductase of the N(2)-fixing bacterium Azotobacter chroococcum was prepared in a soluble form from cells grown aerobically with nitrate as the nitrogen source, and some of its properties have been studied. 2. The enzyme is a FAD-dependent metalloprotein (mol.wt. about 67000), which stoicheiometrically catalyses the direct reduction of nitrite to NH(3) with NADH as the electron donor. 3. NADH-nitrite reductase can exist in two either active or inactive interconvertible forms. Inactivation in vitro can be achieved by preincubation with NADH. Nitrite can specifically protect the enzyme against this inactivation and reverse the process once it has occurred. 4. A. chroococcum nitrite reductase is an adaptive enzyme whose formation depends on the presence of either nitrate or nitrite in the nutrient solution. 5. Tungstate inhibits growth of the microorganism very efficiently, by competition with molybdate, when nitrate is the nitrogen source, but does not interfere when nitrite or NH(3) is substituted for nitrate. The addition of tungstate to the culture media results in the loss of nitrate reductase activity but does not affect nitrite reductase.  相似文献   

14.
Knowledge of the microbiology of dinitrogen (N2)-fixing bacteria in compost rich in de-inking paper sludge (DPS) is limited. Dinitrogen (N2)-fixing bacteria from DPS composts were isolated and studied for their N2-fixing activity in vitro and in vivo. Two Gram-negative N2-fixing isolates were identified as Pseudomonas. At 20 degrees C, both isolates revealed that N2-fixing activity was higher than that of three arctic Pseudomonas strains. Their N2-fixing activity was found to occur between 18 and 25 degrees C, a pattern that was similar to the reference isolate Azotobacter ATCC 7486. Composts successfully showed N2-fixing activity after carbohydrate amendments both with and without inoculation of a N2-fixing isolate. These results suggest that DPS composts support N2-fixing bacteria and that N2-fixing activity is dependent on a usable carbohydrate source.  相似文献   

15.
Spirillum lipoferum, an N2-fixing organism, was grown at constant concentrations of dissolved O2. When supplied with NH4+ aerobically, its doubling time was 1 h; when it fixed N2 microaerophilically, its doubling time was 5-5 to 7 h and the optimal PO2 for growth was 0-005 to 0-007 atm. At its optimal PO2 for growth on N2, S. lipoferum assimilated 8 to 10 mg nitrogen/g carbon substrate used; its efficiency was less at higher PO2 levels. Nitrogenase in cell-free extracts required Mg2+ and Mn2+, and the Fe-protein was activated by Rhodospirillum rubrum activating factor. The nitrogenase had an optimal pH of 7-1 to 7-4 and an apparent Km for acetylene of 0-0036 atm. Extracts of S. lipoferum lost their nitrogenase activity on storage at -18 degrees C, and activity was restored by adding purified Fe-protein from other N2-fixing bacteria.  相似文献   

16.
Activation of Inactive Nitrogenase by Acid-Treated Component I   总被引:19,自引:11,他引:8       下载免费PDF全文
When Azotobacter vinelandii was derepressed for nitrogenase synthesis in a N-free medium containing tungstate instead of molybdate, an inactive component I was synthesized. Although this inactive component I could be activated in vivo upon addition of molybdate to the medium, it could not be activated in vitro when molybdate was added to the extracts. Activation occurred, however, when an acid-treated component I was added to extracts of cells derepressed in medium containing tungstate. Acid treatment completely abolished component I activity. Mutant strains UW45 and UW10 were unable to fix N(2). Both strains synthesized normal levels of component II but produced inactive component I. Acid-treated component I activated inactive component I in extracts of mutant strain UW45 but not mutant strain UW10. This activating factor could be obtained from N(2)-fixing Klebsiella pneumoniae, Clostridium pasteurianum, and Rhodospirillum rubrum.  相似文献   

17.
Internal Membrane Control in Azotobacter vinelandii   总被引:7,自引:6,他引:1       下载免费PDF全文
Azotobacter vinelandii was grown on N(2), NH(4) (+), or NO(3) (-), and an internal membrane network was observed by electron microscopy of thin sections of cells. Cells obtained in early exponential growth contained less internal membrane than did cells from cultures in late exponential growth. It seems likely that O(2) has a role in regulating the amount of internal membrane structure.  相似文献   

18.
19.
Hu Y  Zou F  Cai CQ  Wu HY  Yun HX  Chen YT  Jin GE  Ge RL 《生理学报》2006,58(5):477-482
本文旨在研究大鼠传导性肺动脉平滑肌细胞(pulmonary artery smooth muscle cells,PASMCs)的电生理特征及对急性低氧的反应。用酶解法急性分离出1-2级分支的PASMCs,通过全细胞膜片钳方法研究常氧及急性低氧状况下细胞钾电流的差异,并在常氧下先后使用iBTX和4-AP阻断大电导钙激活钾离子(large conductance Ca-activated K^+,BKCa)通道及延迟整流性钾离子(delayed rectifier K^+,KDR)通道后,观察细胞钾电流特征。根据细胞的大小、形态及电生理特征可将PASMCs分为Ⅰ、Ⅱ、Ⅲ类。iBTX对Ⅰ类细胞几乎无作用,而4-AP几乎完全阻断它的钾电流;Ⅱ类细胞的钾电流在加入iBTX后大部分被抑制,其余的对4.AP敏感;Ⅲ类细胞的钾电流对iBTX及4-AP均敏感。急性低氧对三类细胞的钾电流均有不同程度的抑制,并使Ⅰ类细胞的膜电位显著升高,而Ⅱ、Ⅲ类细胞膜电位升高的程度不如Ⅰ类显著。结果表明,传导性肺动脉有3种形态及电生理特性不同的PASMCs,在急性低氧时其钾电流不同程度地受到抑制,同时静息膜电位也有不同程度去极化,这些可能参与急性低氧时传导性肺动脉舒缩反应的调节。KDR及BKCa通道在3种细胞中的比例不同可能是急性低氧对3种PASMCs影响不同的离子基础。  相似文献   

20.
Pathways of ammonia assimilation into glutamic acid were investigated in ammonia-grown and N2-fixing Clostridium kluyverii and Clostridium butyricum by measuring the specific activities of glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. C. kluyverii had NADPH-glutamate dehydrogenase with a Km of 12.0 mM for NH4+. The glutamate dehydrogenase pathway played an important role in ammonia assimilation in ammonia-grown cells but was found to play a minor role relative to that of the glutamine synthetase/NADPH-glutamate synthase pathway in nitrogen-fixing cells when the intracellular NH4+ concentration and the low affinity of the enzyme for NH4+ were taken into account. In C. butyricum grown on glucose-salt medium with ammonia or N2 as the nitrogen source, glutamate dehydrogenase activity was undetectable, and the glutamine synthetase/NADH-glutamate synthase pathway was the predominant pathway of ammonia assimilation. Under these growth conditions, C. butyricum also lacked the activity of glucose-6-phosphate dehydrogenase, which catalyzes the regeneration of NADPH from NADP+. However, high activities of glucose-6-phosphate dehydrogenase as well as of NADPH-glutamate dehydrogenase with a Km of 2.8 mM for NH4+ were present in C. butyricum after growth on complex nitrogen and carbon sources. The ammonia-assimilating pathway of N2-fixing C. butyricum, which differs from that of the previously studied Bacillus polymyxa and Bacillus macerans, is discussed in relation to possible effects of the availability of ATP and of NADPH on ammonia-assimilating pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号