首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speciation depends on the establishment of reproductive isolation between populations of the same species. Whether assortative mating evolves as a by-product of adaptation is a major question relevant to the origin of species by reproductive isolation. The long-term selection populations used here were originally established 30 years ago from a single cage population (originating from a maternal one) and subsequently subjected to divergent selection for tolerance of toxins in food (heavy metals versus ethanol) to investigate this question. Those populations now differ in sexual isolation and Wolbachia infection status. Wolbachia are common and widespread bacteria infecting arthropods and nematodes. Attention has recently focused on their potential role in insect speciation, due to post-mating sperm-egg incompatibilities induced by the bacteria. In this paper we examine the potential effect of Wolbachia on the level of sexual isolation. By antibiotic curing, we show that removal of Wolbachia decreases levels of mate discrimination (sexual isolation index) between populations by about 50%. Backcrossing experiments confirm that this effect is due to infection status rather than to genetic changes in the populations resulting from antibiotic treatment. Antibiotic treatment has no effect on mate discrimination level between uninfected populations. Our findings suggest that the presence of Wolbachia (or another undetected bacterial associate) act as an additive factor contributing to the level of pre-mating isolation between these Drosophila melanogaster populations. Given the ubiquity of bacterial associates of insects, such effects could be relevant to some speciation events.  相似文献   

2.
Carracedo MC  Suarez C  Casares P 《Genetica》2000,108(2):155-162
The sexual isolation among the related species Drosophila melanogaster, D. simulans and D. mauritiana is asymmetrical. While D. mauritiana males mate well with both D. melanogaster and D. simulans females, females of D. mauritiana discriminate strongly against males of these two species. Similarly, D. simulans males mate with D. melanogaster females but the reciprocal cross is difficult. Interspecific crosses between several populations of the three species were performed to determine if (i) males and females of the same species share a common sexual isolation genetic system, and (ii) males (or females) use the same genetic system to discriminate against females (or males) of the other two species. Results indicate that although differences in male and female isolation depend on the populations tested, the isolation behaviour between a pair of species is highly correlated despite the variations. However, the rank order of the isolation level along the populations was not correlated in both sexes, which suggests that different genes act in male and female sexual isolation. Neither for males nor for females, the isolation behaviour of one species was paralleled in the other two species, which indicates that the genetic systems involved in this trait are species-pair specific. The implications of these results are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures – apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.  相似文献   

4.
Drosophila melanogaster populations in nature usually carry inversion polymorphisms. When they were transferred to and maintained in the laboratory as large cage populations, frequencies of polymorphic inversions were drastically decreased and finally eliminated. This “cage effect” was observed irrespective of the geographical origin of the population or the initial frequency of each inversion. The decrease and elimination of inversions in the cage was not overcome by changing conditions such as medium, temperature, or the number of isofemale lines (40-600) introduced. On the other hand, in the sets of isofemale lines derived from the same geographical origins as the cage populations, each of which was maintained as a small vial population, the inversion frequencies, though decreased from the initial frequencies, were kept at significantly high levels. The cage populations initiated with one or two isofemale lines also maintained the inversion polymorphisms that were as high as vial populations.  相似文献   

5.
We evaluated the degree of reproductive isolation between laboratory populations of the seed beetle (Acanthoscelides obtectus) selected to reproduce early (E) or late (L) in life, where different levels of sexual activity and sexual discrimination have been detected. We found a significant level of behavioral isolation among populations within the E selection regime in which beetles showed enhanced early‐life fitness traits and low sexual activity. In contrast, substantially higher levels of sexual activity and an indiscriminate mating system inhibited rather than promoted pre‐zygotic isolation between the L populations. Our results indicate that the study of sexual activity levels may be crucial for understanding the first steps in the pre‐zygotic isolation among allopatric populations subjected to uniform selection.  相似文献   

6.
Changes in allele frequencies at the esterase 6 (Est 6) and alcohol dehydrogenase (Adh) enzyme loci of Drosophila melanogaster and simulans are examined in natural populations and artificial populations maintained at two temperatures. Results from cage populations at 18 °C and 25 °C provide evidence for temperature selection at both loci. Seasonal population samples show no significant change in gene frequencies for either locus, a reasonable outcome given the small selection coefficients found in cage populations. The temperature effect for the Adh locus appears to be direct: natural selection of the fast allele in cool environs and of the slow allele in warm environs. The temperature effect for Est 6 is weaker and complicated by sex differences and deviations from Hardy-Weinberg expectation. This evidence and different Est 6 frequencies found for melanogaster and simulans, in conjunction with evidence of the male reproductive function of this enzyme, suggest that Est 6 polymorphisms are maintained in natural populations by a complex form of sexual selection.  相似文献   

7.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

8.
Summary It has been hypothesized that reproductive character displacement has evolved in mainland Sonora, Mexico populations of cactophilicD. mojavensis due to the presence of a sympatric sibling speciesD. arizonae. In laboratory tests using ancestral Baja California populations and derived, sympatric mainland populations, asymmetrical sexual isolation has been observed among populations ofD. mojavensis where mainland females discriminate against Baja males. Effects of different pre-adult rearing environments on adult mating behaviour were assessed by comparing fermenting cactus tissues like those used in nature for breeding with laboratory media because previous studies have employed synthetic growth media for fly growth and development. Significant behavioural isolation was evident in all cases when larvae were reared on laboratory food, but was non-significant when flies were reared on fermenting cactus, except for the cactus used by most mainland populations, consistent with previous studies. Time to copulation of Baja females was greater than mainland females over all substrates, but male time to copulation did not differ between populations. Time to copulation for both sexes was significantly greater when flies were reared on laboratory food with one exception. The degree of behavioural isolation was weakly correlated with time to copulation across food types (Spearman rank correlation = 0.58,p = 0.099). Therefore, use of laboratory media in this and previous studies exaggerated adult pre-mating isolation and time to copulation in comparison to natural breeding substrates. These experiments suggest that a change in host substrates by saprophagous insects (where chemical differences exist between hosts) may have subtle effects on mating behaviour in a manner which promotes low levels of sexual isolation as a by-product of their utilization of a particular substrate during larval development. ForD. mojavensis, these results suggest that over evolutionary time, radiation into a new environment (from Baja to the mainland) allowed utilization of new host plants that may have incidentally promoted the sexual isolation patterns that have been observed within this species.See Etges (1992) for the first paper in this series.  相似文献   

9.
Sexual barriers associated with mate choice are often found to be associated with some level of ecological isolation between species. The independence and relative strength of sexual isolation are thus difficult to assess. Here, we take advantage of a pair of marine isopod species (Jaera albifrons and J. praehirsuta) that show sexual isolation and coexist in populations where they share the same microhabitat or not (i.e. without or with ecological isolation). We estimated the strength of sexual isolation between J. albifrons and J. praehirsuta using no‐choice trials and a multiple‐choice experimental population. We found that sexual isolation is strong in both the presence and the absence of ecological isolation, but that it is asymmetric and fails to prevent interspecific gene flow entirely. First‐generation intrinsic post‐zygotic barriers were low, and there was no sexual isolation within J. praehirsuta across habitats. The J. albifrons/J. praehirsuta species pair thus provides an example where the role of sexual isolation as a barrier to gene flow (a) does not depend upon current ecological isolation, (b) seems to have evolved independently of local ecological conditions, but (c) is insufficient to complete speciation entirely on its own.  相似文献   

10.
The so-called copper mosses include a number of rare species that exhibit very broad intercontinental geographic distributions comprised of highly disjunct occurrences. In one species, Scopelophila cataractae, only the haploid gametophyte generation exists in the United States, although sporophytes occur in tropical America and in Asia. Gametophytic plants were sampled from all U.S. populations to determine what factors limit sexual reproduction. More than 50% of the plants in every population were devoid of gametangia, and no population contained plants with both male and female gametangia. Morphological differences between plants from putative male and female populations (when each was interpreted to be unisexual) suggested gametophytic sexual dimorphism, but generalized sexual differences were not maintained under common garden conditions. Experimental growth of plants on soils with low, moderate, or high concentrations of metals demonstrated extensive morphological variability, and thus genetic polymorphism, among five asexual populations. Morphological traits were also significantly plastic in response to differing soil types, but there was no evidence of differences in patterns of plasticity between sexes or populations. All populations produced higher cover area and individual plants formed larger leaves on the most highly metal-contaminated soil. Populations varied significantly in growth on less contaminated soil, again suggesting genetic variability.  相似文献   

11.
Several lines of evidence implicate sexual isolation in both initiating and completing the speciation process. Although its existence is straightforward to demonstrate, understanding the evolution of sexual isolation requires identifying the underlying phenotypes responsible so that we can determine how these have diverged. Here, we study geographic variation in female mate preferences for male sexual displays in the fly Drosophila subquinaria. Female D. subquinaria that are sympatric with its sister species D. recens discriminate strongly against both D. recens and allopatric conspecific males, whereas females from allopatric populations do not. Furthermore, female mate preferences target at least in part a suite of cuticular hydrocarbons (CHCs) in males and geographic variation in CHCs mirrors the pattern of mate discrimination. In this study, we quantify female mate preferences for male CHCs from populations that span the geographic range of D. subquinaria. We find that the direction of linear sexual selection varies significantly between populations that are sympatric versus allopatric with D. recens in a pattern of reproductive character displacement. Differences in preference partially align with existing differences in CHCs and patterns of sexual isolation, although discrepancies remain that suggest the involvement of additional traits and/or more complex, nonlinear preference functions.  相似文献   

12.
We constructed a model for the evolution of sexual isolation by extending Lande's (1981) model of sexual selection. The model predicts that asymmetric sexual isolation is a transient phenomenon, characteristic of intermediate stages of divergence in sexually selected traits. Unlike the Kaneshiro (1976, 1980) proposal, our model does not depend upon drift and the loss of courtship elements to produce asymmetries in sexual isolation. According to our model, the direction of evolution cannot be predicted from asymmetry in sexual isolation. We tested some features of the model using data from an experimental study of sexual isolation in the salamander Desmognathus ochrophaeus. We tested for sexual isolation between 12 allopatric populations and found significant asymmetry in sexual isolation in about a quarter of the test cases. The highest degrees of asymmetry were associated with intermediate levels of divergence. A curvilinear relationship between isolation asymmetry and divergence was predicted by our model and was supported by statistical analysis of the salamander data.  相似文献   

13.
Nanda P  Singh BN 《Genetica》2011,139(6):779-787
The origin of sexual isolation is the central event in the evolution of biological species and plays a key role in maintaining biological diversity. Three mass culture stocks of D. ananassae originating from different geographic localities showing no isolation with each other were subjected to different degrees of bottlenecks i.e. one pair, five pairs and ten pairs. These drift lines were passed through flush-crash cycle at every generation with same initial number of founders, and maintained for twenty-seven generations and then the pattern of matings was tested among these nine drift lines involving 36 crosses in total. In 23 of 36 crosses, the difference between homogamic and heterogamic matings was significant and isolation indices were significantly more than zero in one direction only providing evidence for asymmetrical sexual isolation. Further, when Bonferroni test for pair-wise analysis was employed, significant differences between homogamic and heterogamic matings were found in 25 crosses. These findings provide evidence for origin of sexual isolation by founder effects in D. ananassae.  相似文献   

14.
In Sterile Insect Technique (SIT) programs, massive numbers of insects are reared, sterilized, and released in the field to impede reproduction of pest populations. The domestication and rearing processes used to produce insects for SIT programs may have significant evolutionary impacts on life history and reproductive biology. We assessed the effects of domestication on sexual performance of laboratory reared Queensland fruit fly, Bactrocera tryoni, by comparing an old (49 generations) and a young colony (5 generations). We evaluated mating propensity, mating latency, copula duration, sperm transfer, and ability to induce sexual inhibition in mates. Overall, both males and females from the old colony had greater mating propensity than those from the young colony. Copula duration was longer when females were from the old colony. There was no evidence of sexual isolation between the colonies as males and females from the two colonies had similar propensity to mate with flies from either colony. Males from the old colony transferred more sperm regardless of which colony their mate was from. Finally, males from both colonies were similarly able to induce sexual inhibition in their mates and were also similarly able to secure copulations with already-mated females. Positive effects of domestication on sperm transfer, coupled with maintained ability to induce sexual inhibition in mates and to secure copulations with previously mated females, highlights that domestication may have little effect, or even positive effects, on some aspects of sexual performance that may advantage mass-reared B. tryoni in SIT programs.  相似文献   

15.
The codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is a serious pest of pome fruit worldwide and the sterile insect technique (SIT) provides an environmentally acceptable approach for its control. As the pest is present in both the southern and northern hemispheres it would be possible for a rearing facility in the northern hemisphere to supply sterile moths to an SIT programme in the southern hemisphere during the northern winter and vice versa. This could greatly improve the economics of moth production and the running costs of rearing facilities. However in order to develop this concept, it is important to assess if populations of codling moth from different geographical regions share mating compatibility. Twelve different laboratory and field populations from both hemispheres were sampled and field cage bisexual mating compatibility tests were carried out between selected combinations. The index of sexual isolation (ISI) and the female and male relative performance index (FRPI and MRPI, respectively) were calculated for each mating combination. In only two of the combinations was there a slight but significant deviation from random mating. There were also some significant differences in mating duration between the homotypic matings and the duration of a particular homotypic mating seemed to depend on the origin of the other population in the cage. It was concluded that there exist no barriers to mating between populations of codling moth from many parts of the world and that it would be feasible for sterile moths to be shipped from one rearing facility to SIT programmes in other parts of the world.  相似文献   

16.
Crossing of genetically differentiated populations often results in assortative mating within populations. However, asymmetric sexual isolation or negative assortative mating has occasionally been reported. Previous studies suggested that sexual selection or sexual conflicts would lead to asymmetric mating when local populations are crossed. In order to evaluate the extent of assortative or disassortative mating in population crosses, we conducted laboratory crosses using the flightless grasshopper Podisma sapporensis. Crossing was conducted for all pairwise combinations of three populations, 150–240 km from one another – Teine, Shimokawa, and Akan. We found evidence for asymmetric mating for all the pairs of the populations. In particular, when the Teine and Akan populations were crossed, mating in the Teine male–Akan female cross was significantly more frequent than mating in both within‐population crosses, whereas mating in the Teine female–Akan male cross was significantly less frequent than mating in both within‐population crosses. We examined whether these results can be explained by any of the three hypotheses: (1) Kaneshiro's hypothesis, (2) differentiation in attractiveness, or (3) coevolution between male vigor and female receptivity. All the results were consistent with male vigor differing between populations balanced by different female potential to reject males. The available evidence suggests that antagonistic coevolution between the sexes has led local populations to different equilibria and that crossing of populations at different equilibria has resulted in asymmetry in mating frequencies.  相似文献   

17.
Sexual selection is predicted to drive the coevolution of mating signals and preferences (mating traits) within populations, and could play a role in speciation if sexual isolation arises due to mating trait divergence between populations. However, few studies have demonstrated that differences in mating traits between populations result from sexual selection alone. Experimental evolution is a promising approach to directly examine the action of sexual selection on mating trait divergence among populations. We manipulated the opportunity for sexual selection (low vs. high) in populations of Drosophila pseudoobscura. Previous studies on these experimental populations have shown that sexual selection manipulation resulted in the divergence between sexual selection treatments of several courtship song parameters, including interpulse interval (IPI) which markedly influences male mating success. Here, we measure female preference for IPI using a playback design to test for preference divergence between the sexual selection treatments after 130 generations of experimental sexual selection. The results suggest that female preference has coevolved with male signal, in opposite directions between the sexual selection treatments, providing direct evidence of the ability of sexual selection to drive the divergent coevolution of mating traits between populations. We discuss the implications in the context sexual selection and speciation.  相似文献   

18.
Incipient sexual isolation between genotypes, lines, or populations of the same species is commonly measured in Drosophila by choice tests. Results of these tests are known to be influenced, in an undetermined manner, by the mating propensity of competitors and by discriminatory factors during courtship. We have approached the problem by measuring male and female propensities in separate, independent tests, and by examining whether these estimates could explain the results of the choice tests. First, male and female choice tests were used to measure sexual isolation between populations of Drosophila melanogaster and between populations of D. simulans. Significant deviations from random mating occurred in 31 out of 48 tests, in agreement with the propensity values of the tested genotypes. We conclude that mating propensity instead of discrimination is directly involved in the estimation of sexual isolation in our populations, and advise against the application of male and female choice tests to assess intraspecific isolation without a proper knowledge of the mating propensities of competing individuals. Second, multiple choice tests were used to assess isolation between D. melanogaster populations. In examining the dynamics of matings throughout the test, we show that if competing individuals differ in mating propensities and tests are long enough to allow most matings to happen, a spurious sexual isolation can appear. We recommend that multiple choice tests be terminated once 50 percent of matings had been observed.  相似文献   

19.
Two ecotypes of a marine intertidal snail (Littorina saxatilis), living at different microhabitats and shore levels, have evolved in sympatry and in parallel across the Galician rocky shore. These ecotypes differ in many traits (including size) due to differential adaptation. They meet, mate assortatively, and partially hybridize at the mid shore where the two microhabitats overlap. The partial sexual isolation observed is claimed to be a side‐effect of the size differences between ecotypes combined with a size assortative mating found in most populations of this species. We investigated this hypothesis using three complementary experimental approaches. First, we investigated which of the different shell variables contributed most to the variation in individual sexual isolation in the field by using two new statistics developed for that purpose: (1) pair sexual isolation and (2) ri, which is based on the Pearson correlation coefficient. We found that size is the most important trait explaining the sexual isolation and, in particular, the males appear to be the key sex contributing to sexual isolation. Second, we compared the size assortative mating between regions: exposed rocky shore populations from north‐westwern Spain (showing incomplete reproductive isolation due to size assortative mating) and protected Spanish and Swedish populations (showing size assortative mating but not reproductive isolation between ecomorphs). Most of the variation in size assortative mating between localities was significantly explained by the within‐population level of variation on size. Third, we performed a laboratory male choice experiment, which further suggested that the choice is made predominantly on the basis of size. These results confirm the mechanism proposed to explain the sexual isolation in the Galician hybrid zone and thus support this case as a putative example of parallel incipient speciation. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 513–526.  相似文献   

20.
A combination of divergent natural and sexual selection is a powerful cause of speciation. This conjunction of evolutionary forces may often occur when divergence is initiated by ecological differences between populations because local adaptation to new resources can lead to changes in sexual selection. The hypothesis that differences in resource use contribute to the evolution of reproductive isolation by altering the nature of sexual selection predicts that: (1) differences in sexual traits, such as signals and preferences, are an important source of reproductive isolation between species using different resources; (2) there are identifiable sources of selection on sexual traits that differ between species using different resources; and (3) signals vary between populations using different resources to a larger extent than between populations using the same resource at different localities. Testing these predictions requires a group of closely‐related species or populations that specialize on different resources and for which the traits involved in mate choice are known. The Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) are host plant specialists in which speciation is associated with shifts to novel host plants. Mating in this complex is preceded by an exchange of vibrational signals transmitted through host plant stems, and the signal traits important for mate choice have been identified. In the E. binotata complex, previous work has supported the first two predictions: (1) signal differences between species are important in mate recognition and (2) host shifts can alter both the trait values favoured by sexual selection and the evolutionary response to that selection. In the present study, we tested the last prediction by conducting a large‐scale study of mating signal variation within and between the 11 species in the complex. We find that differences in host use are strongly associated with differences in signal traits important for mate recognition. This result supports the hypothesis that hosts shifts have led to speciation in this group in part through their influence on divergence in mate communication systems. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 60–72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号