首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
It is well established that different coral species have different susceptibilities to thermal stress, yet it is less clear which biological or physical mechanisms allow some corals to resist thermal stress, whereas other corals bleach and die. Although the type of symbiont is clearly of fundamental importance, many aspects of coral bleaching cannot be explained solely by differences in symbionts amongst coral species. Here, I use the CO2 (sink) limitation model of coral bleaching to repose various host traits believed to influence thermal tolerance (e.g. metabolic rates, colony tissue thickness, skeletal growth form, mucus production rates, tissue concentration of fluorescent pigments and heterotrophic feedings capacity) in terms of an integrated strategy to reduce the likelihood of CO2 limitation around its intracellular photosymbionts. Contrasting observational data for the skeletal vital effect on oxygen isotope composition (δ18O) partitions two alternate evolutionary strategies. The first strategy is heavily reliant on a sea water supply chain of CO2 to supplement respiratory CO2(met). In contrast, the alternate strategy is less reliant on the sea water supply source, potentially facilitated by increased basal respiration rates and/or a lower photosynthetic demand for CO2. The comparative vulnerability of these alternative strategies to modern ocean conditions is used to explain the global-wide observation that corals with branching morphologies (and thin tissue layers) are generally more thermally sensitive than corals with massive morphologies (and thick tissue layers). The life history implications of this new framework are discussed in terms of contrasting fitness drivers and past environmental constraints, which delivers ominous predictions for the viability of thin-tissued branching and plating species during the present human-dominated (“Anthropocene”) era of the Earth System.  相似文献   

2.
The morphogenesis of colonial stony corals is the result of the collective behaviour of many coral polyps depositing coral skeleton on top of the old skeleton on which they live. Yet, models of coral growth often consider the polyps as a single continuous surface. In the present work, the polyps are modelled individually. Each polyp takes up resources, deposits skeleton, buds off new polyps and dies. In this polyp oriented model, spontaneous branching occurs. We argue that branching is caused by a so called “polyp fanning effect” by which polyps on a convex surface have a competitive advantage relative to polyps on a flat or concave surface. The fanning effect generates a more potent branching mechanism than the Laplacian growth mechanism that we have studied previously (J. Theor. Biol. 224 (2003) 153). We discuss the application of the polyp oriented model to the study of environmentally driven morphological plasticity in stony corals. In a few examples we show how the properties of the individual polyps influence the whole colony morphology. In our model, the spacing of polyps influences the thickness of coral branches and the overall compactness of the colony. Density variations in the coral skeleton may also be important for the whole colony morphology, which we address by studying two variants of the model. Finally, we discuss the importance of small scale resource translocation in the coral colony and its effects on the morphology of the colony.  相似文献   

3.
Sandin SA  McNamara DE 《Oecologia》2012,168(4):1079-1090
The community structure of sedentary organisms is largely controlled by the outcome of direct competition for space. Understanding factors defining competitive outcomes among neighbors is thus critical for predicting large-scale changes, such as transitions to alternate states within coral reefs. Using a spatially explicit model, we explored the importance of variation in two spatial properties in benthic dynamics on coral reefs: (1) patterns of herbivory are spatially distinct between fishes and sea urchins and (2) there is wide variation in the areal extent into which different coral species can expand. We reveal that the size-specific, competitive asymmetry of corals versus fleshy algae highlights the significance of spatial patterning of herbivory and of coral growth. Spatial dynamics that alter the demographic importance of coral recruitment and maturation have profound effects on the emergent structure of the reef benthic community. Spatially constrained herbivory (as by sea urchins) is more effective than spatially unconstrained herbivory (as by many fish) at opening space for the time needed for corals to settle and to recruit to the adult population. Further, spatially unconstrained coral growth (as by many branching coral species) reduces the number of recruitment events needed to fill a habitat with coral relative to more spatially constrained growth (as by many massive species). Our model predicts that widespread mortality of branching corals (e.g., Acropora spp) and herbivorous sea urchins (particularly Diadema antillarum) in the Caribbean has greatly reduced the potential for restoration across the region.  相似文献   

4.
In stony corals it is often observed that specimens collected from a sheltered growth site have more open and more thinly branched growth forms than specimens of the same species from more exposed growth sites, where stronger water currents are found. This observation was explained using an abiotic computational model inspired by coral growth, in which the growth velocity depended locally on the absorption of a resource dispersed by advection and diffusion (Kaandorp and Sloot, J. Theor. Biol 209 (2001) 257). In that model a morphological range was found; as the Péclet-number (indicating the relative importance of advective and diffusive nutrient transport) was increased, more compact and spherical growth forms were found. Two unsatisfactory items have remained in this model, which we address in the present paper. First, an explicit curvature rule was responsible for branching. In this work we show that the curvature rule is not needed: the model exhibits spontaneous branching, provided that the resource field is computed with enough precision. Second, previously no explanation was given for the morphological range found in the simulations. Here we show that such an explanation is given by the conditions under which spontaneous branching occurs in our model, in which the compactness of the growth forms depends on the ratio of the rates of growth and nutrient transport. We did not find an effect of flow. This suggests that the computational evidence that hydrodynamics influences the compactness of corals in laminar flows may not be conclusive. The applicability of the Laplacian growth paradigm to understand coral growth is discussed.  相似文献   

5.
While the loss of structural complexity causes declines in coral reef fish diversity, the processes leading to this decline are largely unexplained. To explore the role of coral morphology in providing shelter for fishes, tabular, branching and massive corals were filmed with video cameras and their usage by large reef fishes compared. Tabular corals were utilised more than the other two morphologies, with at least triple the abundance, biomass and residence times of large fishes. The preference of coral reef fishes for specific structural traits of tabular corals was also examined using artificial structural units. This experimental component showed that large reef fishes preferred opaque rather than translucent canopies. It appears that large fishes cue to tabular corals because of the concealment and/or shade provided. It is suggested that a loss of tabular corals as a result of climate change would have significant ecological impacts for the coral reef fishes that use these structures for shelter.  相似文献   

6.

Mass coral bleaching events may have disproportionate effects on branching corals, leading to coral community restructuring, reduced biodiversity, and decreased structural complexity. This affects overall reef health and resilience. Functionally important, fast-growing branching Acropora corals were a historically dominant and vital component of Indonesian reefs throughout the twentieth century, yet the genus is also one of the most vulnerable to external stressors. This study used long-term annual reef monitoring data from Indonesia’s Wakatobi Marine National Park (WMNP) to investigate the effects of a mass bleaching event in 2010 on Acropora and other branching corals, evaluate their post-disturbance recovery trajectories, and analyse shifts in coral community composition. Post-bleaching scleractinian coral cover decreased across study sites, with losses in branching corals especially evident. Long-term branching Acropora cover decreased significantly and failed to demonstrate the significant post-disturbance recovery of other branching corals (especially Porites). In areas characterised by relatively high branching Acropora cover (> 15% mean cover) prior to bleaching, long-term coral community composition changes have trended predominately towards branching and massive Porites and branching Montipora. The novelty and key contribution of this study is that results suggest suppressed recovery of Acropora in the WMNP. Contributing factors may include the Allee effect (inhibition of reproduction at low population densities), other forms of inhibited larval recruitment, direct and indirect spatial competition, and changes in the physical reef habitat. These findings have critical implications for this functionally important taxon, future reef conservation efforts, and overall reef health and resilience in the park.

  相似文献   

7.
  1. While the effects of irradiance on coral productivity are well known, corals along a shallow to mesophotic depth gradient (10–100 m) experience incident irradiances determined by the optical properties of the water column, coral morphology, and reef topography.
  2. Modeling of productivity (i.e., carbon fixation) using empirical data shows that hemispherical colonies photosynthetically fix significantly greater amounts of carbon across all depths, and throughout the day, compared with plating and branching morphologies. In addition, topography (i.e., substrate angle) further influences the rate of productivity of corals but does not change the hierarchy of coral morphologies relative to productivity.
  3. The differences in primary productivity for different coral morphologies are not, however, entirely consistent with the known ecological distributions of these coral morphotypes in the mesophotic zone as plating corals often become the dominant morphotype with increasing depth.
  4. Other colony‐specific features such as skeletal scattering of light, Symbiodiniaceae species, package effect, or tissue thickness contribute to the variability in the ecological distributions of morphotypes over the depth gradient and are captured in the metric known as the minimum quantum requirements.
  5. Coral morphology is a strong proximate cause for the observed differences in productivity, with secondary effects of reef topography on incident irradiances, and subsequently the community structure of mesophotic corals.
  相似文献   

8.
The rapid origination and diversification of major animal body plans during the early Cambrian coincide with the rise of Earth's first animal-built framework reefs. Given the importance of scleractinian coral reefs as ecological facilitators in modern oceans, we investigate the impact of archaeocyathan (Class Archaeocyatha) reefs as engineered ecosystems during the Cambrian radiation. In this study, we present the first high-resolution, three-dimensional (3D) reconstructions of branching archaeocyathide (Order Archaeocyathida) individuals from three localities on the Laurentian paleocontinent. Because branched forms in sponges and corals display phenotypic plasticity that preserve the characteristics of the surrounding growth environment, we compare morphological measurements from our fossil specimens to those of modern corals to infer the surface conditions of Earth's first reefs. These data demonstrate that archaeocyaths could withstand and influence the flow of water, accommodate photosymbionts, and build topographically complex and stable structures much like corals today. We also recognize a stepwise increase in the roughness of reef environments in the lower Cambrian, which would have laid a foundation for more abundant and diverse coevolving fauna.  相似文献   

9.
Stony corals are the foundation of coral reef ecosystems and form associations with other reef species. Many of these associations may be ecologically important and play a role in maintaining the health and diversity of reef systems, rendering it critical to understand the influence of symbiotic organisms in mediating responses to perturbation. This study demonstrates the importance of an association with trapeziid crabs in reducing adverse effects of sediments deposited on corals. In a field experiment, mortality rates of two species of branching corals were significantly lowered by the presence of crabs. All outplanted corals with crabs survived whereas 45–80% of corals without crabs died within a month. For surviving corals that lacked crabs, growth was slower and tissue bleaching and sediment load were higher. Laboratory experiments revealed that corals with crabs shed substantially more of the sediments deposited on coral surfaces, but also that crabs were most effective at removing grain sizes that were most damaging to coral tissues. The mechanism underlying this symbiotic relationship has not been recognized previously, and its role in maintaining coral health is likely to become even more critical as reefs worldwide experience increasing sedimentation.  相似文献   

10.
After several decades of disturbance, many coral reefs in the Caribbean are dominated by macroalgae. One process affecting this transition is coral-macroalgal competition, yet few studies have addressed the mechanisms involved. In this study, we investigated competition between the tall and bushy macroalga Sargassum hystrix (J. Agardh) and the branching coral Porites porites (Pallas) on a shallow reef in Jamaica. Experiments were designed to expose coral branches to different treatments to test the role of shading and abrasion by Sargassum on coral growth and polyp expansion. Corals exposed to Sargassum grew significantly more slowly (80% reduction) than controls, but this effect was absent when corals were caged to prevent physical contact with macroalgae. Light levels were reduced in both the algal and cage treatments, but shading apparently had little effect on the growth of corals in cages. Short-term measurements of integrated net water flow did not detect variation among treatments. In algal-mimic treatments, where clear plastic strips could touch but not shade the corals, growth rates were 25% lower than controls, but this effect was not statistically significant. Thus, the growth of corals in contact with Sargassum was reduced by abrasion and, to a lesser extent, by factors unique to living macroalgae. Analysis of polyp expansion showed that polyps were more frequently retracted when corals were in contact with macroalgae or algal-mimics compared to controls or cage treatment; the frequency of polyp contraction was correlated positively with growth. Together, these results suggest that abrasion-mediated polyp retraction is one of the primary mechanisms of competition utilized by tall (ca. 17 cm) macroalgae against scleractinian corals.  相似文献   

11.
Morphological variation in marine sessile organisms is frequently related to environmental factors. Quantifying such variation is relevant in a range of ecological studies. For example, analyzing the growth form of fossil organisms may indicate the state of the physical environment in which the organism lived. A quantitative morphological comparison is important in studies where marine sessile organisms are transplanted from one environment to another. This study presents a method for the quantitative analysis of three-dimensional (3D) images of scleractinian corals obtained with X-ray Computed Tomography scanning techniques. The advantage of Computed Tomography scanning is that a full 3D image of a complex branching object, including internal structures, can be obtained with a very high precision. There are several complications in the analysis of this data set. In the analysis of a complex branching object, landmark-based methods usually do not work and different approaches are required where various artifacts (for example cavities, holes in the skeleton, scanning artifacts, etc.) in the data set have to be removed before the analysis. A method is presented, which is based on the construction of a medial axis and a combination of image-processing techniques for the analysis of a 3D image of a complex branching object where the complications mentioned above can be overcome. The method is tested on a range of 3D images of samples of the branching scleractinian coral Madracis mirabilis collected at different depths. It is demonstrated that the morphological variation of these samples can be quantified, and that biologically relevant morphological characteristics, like branch-spacing and surface/volume ratios, can be computed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
White syndrome (WS) is currently the most prevalent disease of scleractinian corals in the Indo-Pacific region, with an ability to exist in both epizootic and enzootic states. Here, we present results of an examination of WS lesion dynamics and show that potentially associated traits of host morphology (i.e., branching vs. massive), lesion size, and tissue deposition rate influence disease severity and recovery. Lesion healing rate was positively correlated with initial lesion size in both morphologies, but the rate at which lesions healed differed between morphologies. New lesions in branching Porites cylindrica appeared less frequently, were smaller and healed more quickly, but were more abundant than in closely-related massive Porites sp(p). The positive association between lesion size and healing rate was partly explained by geometry; branching limited lesion maximum size, and larger lesion margins contained more polyps producing new tissue, resulting in faster healing. However, massive colonies deposited tissue more slowly than branching colonies, resulting in slower recovery and more persistent lesions. Corallite size and density did not differ between species and did not, therefore, influence healing rate. We demonstrated multiple modes of pathogen transmission, which may be influenced by the greater potential for pathogen entrainment in branching vs. massive morphologies. We suggest that attributes such as colony morphology and species-specific growth rates require consideration as we expand our understanding of disease dynamics in colonial organisms such as coral.  相似文献   

13.
We study a model for the community dynamics of marine sessile organisms with space limitation both in recruitment and in growth. We consider an open population in which recruits are supplied from a pelagic pool of larvae produced by adults in distant habitats. Assumptions are: the larval settlement rate is proportional to the amount of free space and to the abundance of larvae in the water column. The growth rate of settled individuals increases with the fraction of free space within the local habitat. We study the competition between two morphotypes with different rates of recruitment, growth, and mortality. When adult mortality is low, following a major disturbance that creates bare patch, the space is quickly filled by larval recruitment and adult growth. Then the morphotype composition changes slowly and converges to the equilibrium that is strongly affected by mortality. We also examine several other limiting cases in which one of the three demographic processes occurs either very slowly or very quickly. Based on the model behavior, we discuss the possible factors responsible for the spatial variation in the morphotype composition observed in coral communities. The dominance of branching corals in protected sites can be explained by their faster growth than tabular corals. The dominance of tabular corals in exposed sites can be explained either by lower mortality or by faster recruitment than branching corals.  相似文献   

14.
Dr. Karl Kleemann 《Facies》1994,31(1):131-139
Summary The fossil record of coral and boring mytilid bivalves IS investigated. Middle Miocene associations from Austria, Hungary, and Turkey are described. As host corals,Montastrea, Porites, Siderastrea, Solenastrea, andTarbellastraea can be noted. Eocene (Waschberg Zone) and Upper Cretaceous (Gosau Formation) examples are presented from Austria only. As host corals,Favia andMontastrea, respectivelyAstrocoenia and an unidentified branching coral are recorded. The associated bivalve species are all mytilidLithophaga, includingL. laevigata (Quoy & Gaimard) inTarbellastraea, a new Middle Miocene species inMontastrea, andL. alpina (Zittel) inAstrocoenia, the latter two from Styria, Austria. Thecharacteristic features of the coral-bivalve relationships include (in massive corals): Boreholes more or less in the direction of coral growth, radially arranged, elongate boreholes, produced by keeping pace with coral growth. Bivalves were not only present near the surface, but deep inside the skeleton, representing successive generations in the same host colony. After the death of borers, their tunnels were closed by coral overgrowth. Cup-shaped false floors in the boreholes are correlated to reduced coral growth, indicating individual longevity of bivalves. The spacing of the floors mirrors the growth rate of the host coral (like its density bands), their number representing the minimal age of the respective bivalve. In branching corals, boreholes of the associated smallsizedLithophaga tended to turn into the axes of branchlets, when space was limited. Elongated boreholes and false floors were usually not developed, as bivalve growth obviously exceeded lateral growth of branchlets and specimens were rather short-lived. References to probable associations of coral and mytilid boring bivalves are given. It is quite likely that they have occurred since Jurassic times and probably since the Upper Triassic. So far, they have been ascertained since the Upper Cretaceous in massive and branching corals.  相似文献   

15.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

16.
We explore impacts on pristine atolls subjected to anthropogenic near-field (human habitation) and far-field (climate and environmental change) pressure. Using literature data of human impacts on reefs, we parameterize forecast models to evaluate trajectories in coral cover under impact scenarios that primarily act via recruitment and increased mortality of larger corals. From surveys across the Chagos, we investigate the regeneration dynamics of coral populations distant from human habitation after natural disturbances. Using a size-based mathematical model based on a time-series of coral community and population data from 1999-2006, we provide hind- and forecast data for coral population dynamics within lagoons and on ocean-facing reefs verified against monitoring from 1979-2009. Environmental data (currents, temperatures) were used for calibration. The coral community was simplified into growth typologies: branching and encrusting, arboresent and massive corals. Community patterns observed in the field were influenced by bleaching-related mortality, most notably in 1998. Survival had been highest in deep lagoonal settings, which suggests a refuge. Recruitment levels were higher in lagoons than on ocean-facing reefs. When adding stress by direct human pressure, climate and environmental change as increased disturbance frequency and modified recruitment and mortality levels (due to eutrophication, overfishing, pollution, heat, acidification, etc), models suggest steep declines in coral populations and loss of community diversification among habitats. We found it likely that degradation of lagoonal coral populations would impact regeneration potential of all coral populations, also on ocean-facing reefs, thus decreasing reef resilience on the entire atoll.  相似文献   

17.
Permata WD  Hidaka M 《Zoological science》2005,22(11):1197-1203
Most colonial corals vary intraspecifically in growth forms, and the diversity in branching morphology is especially striking. While the effects of environmental factors on growth forms have been studied, the genetic control of coral branching patterns has received little attention. The discovery of ontogenetic changes in the capacity to originate branching would set the stage for studies of how branch formation is genetically controlled. During experiments investigating contact reactions in the coral Pocillopora damicornis, we observed that young colonies derived from settled planulae and colonies regenerated from adult branch tips assumed different growth forms. Young colonies formed at least one branch from the central region of the colony, while colonies regenerated from adult branch tips (3-5 mm long) did not form branches during the 9-month observation period. This pattern was invariable, regardless of the types and outcomes of the contact experiments or the orientation of the branch tips. However, some fragments taken from 1- or 2-year-old colonies formed branches. This suggests that the rate of branch formation in P. damicornis colonies decreases with age. These findings will facilitate investigations of the mechanism of coral branch formation at the molecular level.  相似文献   

18.
造礁石珊瑚对低温的耐受能力及响应模式   总被引:4,自引:0,他引:4  
通过实验室生态模拟,研究了低温胁迫下三亚湾5种造礁石珊瑚(十字牡丹珊瑚、佳丽鹿角珊瑚、花鹿角珊瑚、强壮鹿角珊瑚、澄黄滨珊瑚)的耐受性,分析了造礁石珊瑚对低温的响应模式.结果表明:造礁石珊瑚耐受低温能力与其骨骼类型有关,枝状珊瑚最先死亡,块状珊瑚的耐受能力明显高于枝状珊瑚;14 ℃持续3 d是三亚湾枝状造礁石珊瑚的致死低温;14 ℃持续3 d为块状澄黄滨珊瑚的致白化低温;12 ℃持续10 d为叶片状十字牡丹珊瑚的致死温度;块状澄黄滨珊瑚受到低温胁迫时表面形成粘膜,阻止了珊瑚进一步排出共生虫黄藻. 耐高温的珊瑚对低温也表现出较强的耐受能力,珊瑚对低温胁迫的响应模式与对高温的响应模式基本一致, 即珊瑚首先不伸展触手,紧接着不断释放粘液并排出共生藻,最后白化、死亡.  相似文献   

19.
In addition to experimental studies, computational models provide valuable information about colony development in scleractinian corals. Using our simulation model, we show how environmental factors such as nutrient distribution and light availability affect growth patterns of coral colonies. To compare the simulated coral growth forms with those of real coral colonies, we quantitatively compared our modelling results with coral colonies of the morphologically variable Caribbean coral genus Madracis. Madracis species encompass a relatively large morphological variation in colony morphology and hence represent a suitable genus to compare, for the first time, simulated and real coral growth forms in three dimensions using a quantitative approach. This quantitative analysis of three-dimensional growth forms is based on a number of morphometric parameters (such as branch thickness, branch spacing, etc.). Our results show that simulated coral morphologies share several morphological features with real coral colonies (M. mirabilis, M. decactis, M. formosa and M. carmabi). A significant correlation was found between branch thickness and branch spacing for both real and simulated growth forms. Our present model is able to partly capture the morphological variation in closely related and morphologically variable coral species of the genus Madracis.  相似文献   

20.
The detrimental effect of climate change induced bleaching on Caribbean coral reefs has been widely documented in recent decades. Several studies have suggested that increases in the abundance of thermally tolerant endosymbionts may ameliorate the effect of climate change on reefs. Symbionts that confer tolerance to temperature also reduce the growth rate of their coral host. Here, we show, using a spatial ecosystem model, that an increment in the abundance of a thermally tolerant endosymbiont (D1a) is unlikely to ensure the persistence of Caribbean reefs, or to reduce their rate of decline, due to the concomitant reduction in growth rate under current thermal stress predictive scenarios. Furthermore, our results suggest that given the documented vital rates of D1a‐dominated corals, increasing dominance of D1a in coral hosts may have a detrimental effect by reducing the resilience of Caribbean reefs, and preventing their long‐term recovery. This is because Caribbean ecosystems appear to be highly sensitive to changes in the somatic growth rate of corals. Alternative outcomes might be expected in systems with different community‐level dynamics such as reefs in the Indo‐Pacific, where the ecological costs of reduced growth rate might be far smaller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号