首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
B lymphocytes convert arachidonic acid (AA) to the 5-lipoxygenase products leukotriene B4 (LTB4) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) when subjected to oxidative stress. 5-HETE has little biological activity, but can be oxidized by a selective dehydrogenase in some cells to 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a potent eosinophil chemoattractant. We found that CESS cells, a B lymphocyte cell line, convert AA to 5-oxo-ETE and this is selectively stimulated by oxidative stress. In the presence of H2O2, 5-oxo-ETE is a major AA metabolite in these cells (5-oxo-ETE≈5-HETE>LTB4). The cyclooxygenase product 12-hydroxy-5,8,10-heptadecatrienoic acid is also formed, but is not affected by H2O2. Diamide had effects similar to those of H2O2 and both substances had similar effects on human tonsillar B cells. H2O2 also stimulated 5-oxo-ETE formation from its direct precursor 5-HETE in tonsillar B and CESS cells, and this was inhibited by the glutathione reductase inhibitor carmustine. H2O2 concomitantly induced rapid increases in GSSG and NADP+ and reductions in GSH and NADPH. We conclude that oxidative stress stimulates 5-oxo-ETE synthesis in B lymphocytes by two mechanisms: activation of 5-lipoxygenase and increased oxidation of 5-HETE by NADP+-dependent 5-hydroxyeicosanoid dehydrogenase. B lymphocyte-derived 5-oxo-ETE could contribute to eosinophilic inflammation in asthma and other allergic diseases.  相似文献   

2.
Stimulation of human neutrophils with 12-hydroperoxyeicosatetraenoic acid (12-HPETE) led to formation of 5S, 12S-dihydroxyeicosatetraenoic acid (DiHETE), but leukotriene B4 (LTB4) or 5-hydroxyeicosatetraenoic acid (5-HETE) was not detectable by reversed-phase high-performance liquid chromatography analysis. N-formylmethionylleucylphenylalanine (FMLP) induced the additional synthesis of small amounts of LTB4 in 12-HPETE-stimulated neutrophils. The addition of arachidonic acid greatly increased the synthesis of LTB4 and 5-HETE by neutrophils incubated with 12-HPETE. In experiments using [1-14C]arachidonate-labeled neutrophils, little radioactivity was released by 12-HPETE alone or by 12-HPETE plus FMLP, while several radiolabeled compounds, including LTB4 and 5-HETE, were released by A23187. These findings demonstrate that LTB4 biosynthesis by 12-HPETE-stimulated neutrophils requires free arachidonic acid which may be endogenous or exogenous.  相似文献   

3.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B (LTB), 6-trans-LTB4, 12-epi-6-trans-LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohydroxyeicosatetraenoic acids (i.e., 5-HETE) and omega-oxidation products (i.e., 2O -COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 microM), LTB4 but not 5-HETE formation was impaired. (1-14C)Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate, (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

4.
Characterization of leukotriene A4 and B4 biosynthesis   总被引:4,自引:0,他引:4  
We have studied LTA4 and LTB4 synthesis in a cell-free system from RBL-1 cells. All the enzymes leading to the formation of LTB4 from arachidonic acid are localized in the soluble fraction (100,000 x g supernatant) of these cells. The formation of LTA4 and LTB4 is complete by 10 min. When we varied the arachidonic acid concentration from 1 to 300 microM, the synthesis of LTB4 leveled off at 30 microM and of LTA4 at 100 microM while 5-HETE had not reached a plateau at 300 microM. This enzyme system has the capacity to generate relatively large amounts of 5-HETE and LTA4 and only a relatively small amount of LTB4. Therefore, the rate limiting step is not the 5-lipoxygenase, the first step in the pathway, but the conversion of LTA4 to LTB4. This is in contrast to cyclooxygenase pathway where the first step is rate limiting. A second addition of arachidonic acid at submaximal concentration for LTA4 synthesis did not produce any additional LTA4 or LTB4. Further study of this phenomenon showed that the 5-lipoxygenase and LTA-synthase were inactivated with time by preincubation with arachidonic acid and that peroxy fatty acids seem to be the inactivating species.  相似文献   

5.
Highly purified human tonsillar B lymphocytes at different stages of activation were incubated with leukotriene B4 (LTB4). As a key marker for activation, we used the CD23 Ag. LTB4 enhanced the CD23 expression on resting B cells in synergy with B cell-stimulating factors from 4% to 50%. Maximal effect of LTB4 was observed at 10(-10) M to 10(-12) M. LTB4 also augmented the S and M phase entries as well as Ig secretion in synergy with IL-2 and IL-4. In contrast, 5S,12S-dihydroxyeicosatetraenoic acid, an isomer of LTB4, and leukotriene C4 lacked these effects. The results indicate that LTB4 amplifies lymphokine-driven activation, replication, and differentiation of human B lymphocytes.  相似文献   

6.
Rat neutrophils isolated from three-hour carrageenan pleural exudates actively metabolize arachidonic acid into three major metabolites, HHT, 11-HETE and 15-HETE. However, in the presence of the calcium ionophore, A23187, or the non-ionic detergent, BRIJ 56, these cells also produce 5-HETE and LTB. The production of these lipoxygenase products is calcium dependent. While non-steroidal anti-inflammatory drugs do not affect 5-HETE or LTB production, BW 755C and ETYA inhibit formation of these metabolites from exogenously added arachidonic acid.  相似文献   

7.
Rat neutrophils isolated from three-hour carrageenan pleural exudates actively metabolize arachidonic acid into three major metabolites, HHT, 11-HETE and 15-HETE. However, in the presence of the calcium ionophore, A23187, or the non-ionic detergent, BRIJ 56, these cells also produce 5-HETE and LTB. The production of these lipoxygenase products is calcium dependent. While non-steroidal anti-inflammatory drugs do not affect 5-HETE or LTB production, BW 755C and ETYA inhibit formation of these metabolites from exogenously added arachidonic acid.  相似文献   

8.
Human peripheral blood mononuclear cells were isolated and assessed for the presence of contaminating polymorphonuclear leukocytes and platelets. Incubations of these cell isolates were performed in the presence or absence of the calcium ionophore A23187 and/or 1-14C-labeled or unlabeled arachidonic acid. Using reverse phase high pressure liquid chromatography with simultaneous monitoring of ultraviolet light absorption at 229 and 280 nm and, where appropriate, of radioactivity, our studies reveal that human peripheral blood mononuclear cells generate leukotrienes C4 and B4 (LTC4 and LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) following stimulation with A23187. The ratio of LTC4 to LTB4 was approximately 10-fold greater among the mononuclear cells than among similar incubations of polymorphonuclear leukocytes. Furthermore, the mononuclear cells failed to metabolize LTB4 into the omega-hydroxy or omega-carboxy derivatives that were always present in, and very characteristic of incubations of polymorphonuclear leukocytes. Depletion of monocytes from the mononuclear cells by double adherence resulted in virtual loss of the generation of 5-lipoxygenase-derived products by the remaining nonadherent cells, supporting the conclusion that the monocytes and not the lymphocytes were the source of LTC4, LTB4, and 5-HETE. The presence of both 12-HETE and the cyclooxygenase-derived 12-hydroxyheptadecatrienoic acid correlated with the degree of platelet contamination, suggesting that the platelets account for the presence of these compounds.  相似文献   

9.
The cellular and extracellular distribution of leukotriene B4 (LTB4) generated in human neutrophilic polymorphonuclear leukocytes (PMN) stimulated with unopsonized zymosan has been compared with that generated in PMN activated by the calcium ionophore. The amounts of extracellular and intracellular LTB4 were quantitated by radioimmunoassay. The authenticity of the immunoreactive LTB4 was confirmed by the elution of a single immunoreactive peak after reverse phase-high performance liquid chromatography (RP-HPLC) at the retention time of synthetic LTB4, by the identical elution time of a peak of radiolabeled product derived from [3H]arachidonic acid-labeled PMN with the immunoreactive product, and by the comparable chemotactic activity on a weight basis of immunoreactive LTB4 and synthetic LTB4 standard. Under optimal conditions of stimulation by unopsonized zymosan, more than 78% of the generated immunoreactive LTB4 remained intracellular, whereas with optimal activation by the ionophore, less than 8.6% of immunoreactive LTB4 was retained. Resolution by RP-HPLC of the products from the supernatants and cell extracts of [3H]arachidonic acid-labeled PMN stimulated with unopsonized zymosan and those stimulated with calcium ionophore allowed identification and measurement of 5-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-LTB4, LTB4, and omega oxidation products of LTB4 by radioactivity. With zymosan stimulation of PMN, 5-HETE and the 6-trans-LTB4 diastereoisomers were not released, LTB4 was partially released, and the omega oxidation products of LTB4 were preferentially extracellular in distribution. In contrast, with ionophore stimulation, only 5-HETE had any duration of intracellular residence being equally distributed intra- and extracellularly throughout the 30-min period of observation; 6-trans-LTB4, LTB4, and the omega oxidation products of LTB4 were retained at less than 19%. The respective distributions of 5-HETE after zymosan and ionophore stimulation were not altered by the introduction of albumin to the reaction mixtures to prevent reacylation, or by hydrolysis of the cell extract to uncover any product that had been reacylated. The finding that stimulation of PMN with unopsonized zymosan results in the cellular retention of 5-lipoxygenase products suggests that release of these metabolites may be an event that is regulated separately from their generation.  相似文献   

10.
Formation of the 12R-lipoxygenase product, 12R-hydroperoxyeicosatetraenoic acid (12R-HPETE), has been detected previously only in human skin (Boeglin et al. (1998) Proc. Natl. Acad. Sci. USA 95, 6744). The unexpected appearance of an EST sequence (AA649213) for human 12R-lipoxygenase from germinal center B lymphocytes purified from human tonsils prompted our search for the existence of the enzyme in this novel source. Incubation of [1-14C]arachidonic acid with homogenates of human tonsillar tissue yielded mixtures of radiolabeled 12-HETE and 15-HETE. Stereochemical analysis showed varying ratios of 12S- and 12R-HETE, while 15-HETE was exclusively of the S-configuration. Using stereospecifically labeled [10S-3H]- and [10R-3H]arachidonic acid substrates we detected pro-R hydrogen abstraction at carbon 10 associated with formation of 12R-HETE. This mechanistic evidence implicates a 12R-lipoxygenase in the biosynthesis of 12R-HETE. The mRNA for the enzyme was identified in tonsils by RT-PCR and Northern analysis. The cellular distribution was established by in situ hybridization. Unexpectedly, hybridization was not observed in the lymphocytes of the germinal centers. Specific reaction was restricted to squamous epithelial cells, including the epithelium lining the tonsillar crypts. In this location the 12R-lipoxygenase might help regulate differentiation of the epithelium or participate in lymphocyte- epithelial cell interactions.  相似文献   

11.
Neutrophils which ingest particles (serum-treated zymosan, monosodium urate crystals) or are exposed to calcium ionophore A23187 generate leukotriene B4 (LTB4). Earlier work has shown that cells exposed to colchicine before exposure to monosodium urate crystals produce less LTB4; the formation of 5-HETE is unaffected. To determine whether inhibition by colchicine of LTB4 generation was stimulus-specific and was mediated by microtubule integrity, the effects of colchicine (10 microM, 60 min) on the release of lipoxygenase products from neutrophils exposed to ionophore A23187 (10 microM, 5 min) were examined. In the presence of exogenous arachidonic acid (100 microM, 15 min), colchicine decreased LTB4 to 48% +/- 11.7 of control and 5-HETE to 60.5% +/- 5.7 of control (mean +/- SEM); 15-HETE was also decreased to 61% +/- 10.3 of control. In the absence of exogenous arachidonate, LTB4 was decreased to 22.2% +/- 11.7 of control and 5-HETE to 13% +/- 4.8 of control. Lumicolchicine did not significantly affect formation of 5-HETE or LTB4. However, vinblastine sulfate (20 microM, 60 min), another microtubule-disruptive agent, decreased the formation of both 5-lipoxygenase products. The effects of colchicine and vinblastine were not due to impairment of cell viability because the release of cytoplasmic lactic dehydrogenase was unaffected. Ultrastructural analysis of centriolar microtubules showed that decrements in microtubule numbers of colchicine- and vinblastine-treated cells paralleled decrements in 5-lipoxygenase products. These pharmacologic manipulations suggested that functional microtubules might be required for optimal lipoxygenase activity. Consequently, we prepared neutrophil-derived cytoplasts, devoid of an intact microtubule system. No significant decreases in the 5- or 15-lipoxygenase products were found when cytoplasts were exposed to colchicine in the presence of exogenous arachidonate and A23187. The data show that colchicine inhibits the formation of lipoxygenase products from neutrophils stimulated with A23187, most likely via its effect on microtubules, the integrity of which appears necessary for full expression of 5- and 15-lipoxygenases.  相似文献   

12.
In this study we report the in vitro inhibition of leukotriene synthesis in calcium ionophore (A23187)-stimulated, intact human blood neutrophils by AHR-5333. The results showed that AHR-5333 inhibits 5-HETE, LTB4 and LTC4 synthesis with IC50 values of 13.9, 13.7 and 6.9 microM, respectively. Further examination of the effect of AHR-5333 on individual reactions of the 5-lipoxygenase pathway (i.e. conversion of LTA4 to LTB4, LTA4 to LTC4, and arachidonic acid to 5-HETE) showed that this agent was not inhibitory to LTA4 epoxyhydrolase and glutathione-S-transferase activity in neutrophil homogenates. However, conversion of arachidonic acid (30 microM) to 5-HETE was half maximally inhibited by 20 microM AHR-5333 in the cell-free system. The inhibition of LTB4 and LTC4 formation in intact neutrophils by AHR-5333 appears to be entirely due to a selective inhibition of 5-lipoxygenase activity and an impaired formation of LTA4, which serves as substrate for LTA4 epoxyhydrolase and glutathione-S-transferase. AHR-5333 did not affect the transformation of exogenous arachidonic acid to thromboxane B2, HHT and 12-HETE in preparations of washed human platelets, indicating that this agent has no effect on platelet prostaglandin H synthase, thromboxane synthase and 12-lipoxygenase activity. The lack of inhibitory activity of AHR-5333 on prostaglandin H synthase activity was confirmed with microsomal preparations of sheep vesicular glands.  相似文献   

13.
The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of [1-14C]arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of [1-14C]arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of [1-14C]arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke [1-14C]AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with [1-14C]arachidonic acid and [3H]palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of [1-14C]arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of [1-14C]arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of [3H]LTB4 to its receptor on neutrophils. In addition, they did not stimulate aggregation or induce adhesion of neutrophils to human endothelial cells. Results indicate that both LXA4 and LXB4 stimulate the rapid remodeling of neutrophil phospholipids to release arachidonic acid without provoking either aggregation or the formation of lipoxygenase-derived products within a similar temporal and dose range. Together they indicate that LXA4 and LXB4 display selective actions with human neutrophils and suggest that these eicosanoids possess unique profiles of action which may regulate neutrophil function during inflammation.  相似文献   

14.
The effects of the lipoxygenase products of arachidonic acid, 5- and 12-hydroxyeicosatetraenoic acid (5- and 12-HETE) and leukotriene B4 (LTB4), on the spontaneous contractility of lower uterine segment human myometrial strips obtained prior to labour have been studied in vitro. 5-HETE gave a dose- dependent (10-500ng) increase in both the rate of contractions and overall contractility of myometrial strips while 12-HETE and LTB4 had no effect at the same concentrations. Prostaglandin F2 alpha (50ng) contracted all myometrial strips in a similar pattern to 5-HETE but was approximately 10 times more potent. The effect of 5-HETE may be direct or perhaps indirect via interaction with the cyclo-oxygenase pathway. The findings do not disprove the contention that the onset of parturition may be characterised by a switch in arachidonic acid metabolism in intra-uterine tissues from lipoxygenase to cyclo-oxygenase products.  相似文献   

15.
Human B and T lymphocytes convert leukotriene A4 into leukotriene B4   总被引:1,自引:0,他引:1  
Incubation of human tonsillar B lymphocytes and peripheral blood T lymphocytes with leukotriene A4 led to the formation of leukotriene B4. The purity of these cell suspensions was more than 99%, containing less than 0.5% monocytes. Incubation of purified B or T lymphocytes with the calcium ionophore A23187 did not lead to the formation of any detectable amounts of leukotrienes. Several established cell lines of B and T lymphocytic origin were also found to convert leukotriene A4 into leukotriene B4, showing that monoclonal lymphocytic cells possess leukotriene A4 hydrolase activity.  相似文献   

16.
Peritoneal macrophages (PM), obtained from 39 healthy women with normal laparoscopy findings, were stimulated with the ionophore A23187 or/and arachidonic acid (AA) both in adherence and in suspension. AA lipoxygenase metabolites were determined by reversed-phase HPLC. The major metabolites identified were 5-hydroxyeicosatetraenoic acid (5-HETE), leukotriene (LT)B4 and LTC4. The 20-hydroxy-LTB4, 20-carboxy-LTB4, and 15-HETE were not detected. Incubations of adherent PM with 2 microM A23187 induced the formation of LTB4, 110 +/- 19 pmol/10(6) cells, 5-HETE, 264 +/- 53 pmol/10(6) cells and LTC4, 192 +/- 37 pmol/10(6) cells. When incubated with 30 microM exogenous AA, adherent PM released similar amounts of 5-HETE (217 +/- 67 pmol/10(6) cells), but sevenfold less LTC4 (27 +/- 12 pmol/10(6) cells) (p less than 0.01). In these conditions LTB4 was not detectable. These results indicate that efficient LT synthesis in PM requires activation of the 5-lipoxygenase/LTA4 synthase, as demonstrated previously for blood phagocytes. When stimulated with ionophore, suspensions of Ficoll-Paque-purified PM produced the same lipoxygenase metabolites. The kinetics of accumulation of the 5-lipoxygenase/LTA4 synthase products in A23187-stimulated adherent cells varied for the various metabolites. LTB4 reached a plateau by 5 min, whereas LTC4 levels increased up to 60 min, the longest incubation time studied. Levels of 5-HETE were maximal at 5 min, and then slowly decreased with time. Thus, normal PM, in suspension or adherence, have the capacity to produce significant amounts of 5-HETE, LTB4, and LTC4. The profile of lipoxygenase products formed by the PM and the reactivity of this cell to AA and ionophore A23187 are similar to those of the human blood monocyte, but different from those of the human alveolar macrophage.  相似文献   

17.
Leukotriene B5 (LTB5) and three stereoisomers were prepared biosynthetically from eicosapentaenoic acid and compared with the analogous derivatives of arachidonic acid for their chemotactic and aggregating effects on human neutrophilic polymorphonuclear leukocytes. Leukotriene B4 (LTB4), LTB5, and the 6-trans-diastereoisomers of each were generated by activating polymorphonuclear leukocytes with the calcium ionophore A23187 in the presence of 14C-labeled and unlabeled arachidonic acid or 14C-labeled and unlabeled eicosapentaenoic acid, respectively. The double lipoxygenase products, (5S,12S)-6-trans-8-cis-LTB4 and (5S,12S)-6-trans-8-cis-LTB5, were generated from 5S-hydroxyeicosatetraenoic acid and racemic 5-hydroxyeicosapentaenoic acid intermediates by incubation with platelet sonicates. The products of each reaction were isolated by reverse-phase-high performance liquid chromatography and identified by their retention times relative to the appropriate totally synthetic standards, ultraviolet absorption spectra, immunoreactivity in a radioimmunoassay for LTB4, and, for all but the double lipoxygenase products, by incorporation of radiolabel from the specific polyunsaturated fatty acid source. When the concentration of LTB5 eliciting maximum chemotactic response of human polymorphonuclear leukocytes, 50 ng/ml (1.5 X 10(-7) M), and that eliciting a maximum aggregation response, 20 ng/ml (5.9 X 10(-8) M), were compared with the interpolated values of LTB4 eliciting comparable effects, the potency of LTB5 relative to LTB4 was approximately 1:8 as a chemotactic agent and about 1:20 as an aggregating agent. The double lipoxygenase products and the resolved 6-trans-diastereoisomers of the pentaene and tetraene series were about 2 logs less active as chemotactic factors than LTB4 and only (5S,12S)-6-trans-8-cis-LTB4 had even minimal aggregating activity.  相似文献   

18.
Lipoxygenase (LO) products generated by human PMN were examined utilizing a gradient-HPLC and rapid spectral detector which permitted continuous UV-spectral monitoring of leukotrienes, lipoxins and related oxygenated products of arachidonic acid. When exposed to the ionophore A23187, PMN generated LTB4 and its omega-oxidation products as well as LXA4, LXB4, and 7-cis-11-trans-LXA4 from endogenous sources. Addition of 15-HETE changed the profile of products generated by activated PMN and led to a time- and dose-dependent increase in lipoxins and related compounds while the production of LTB4 and its omega-oxidation products was inhibited. Results of time-course and radiolabel studies revealed that 15-HETE is rapidly transformed within 15 s to 5,15-DHETE and conjugated tetraene-containing products, and that the inhibition of leukotriene formation followed a similar time-course. In contrast, PMN did not generate either lipoxins or related products from 5-[3H]HETE, nor did 5-HETE block leukotriene formation. Stimulated PMN generated 5,15-DHETE from exogenous 5-HETE, while in the absence of ionophore, 5-HETE was transformed to 5,20-HETE. These results indicate that PMN can generate lipoxins and related products from endogenous sources and that 15-HETE and 5-HETE are transformed by different routes.  相似文献   

19.
Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.  相似文献   

20.
The metabolism of exogenous and endogenous [14C] arachidonc acid was studied in purified human peripheral blood lymphocytes carefully freed of contaminating platelets. Formation of products co-migrating in a number of different solvent systems with 5-hydroxyarachidonic acid (5-HETE), thromboxane B2 (TB2), prostaglandins and probably 12-hydroxyarachidonic acid (12-HETE) was demonstrated. In cells prelabeled with [14C] arachidonic acid, phytohemagglutinin (PHA) produced substantial (3.5- to 12-fold) increases in 5-HETE, 12-HETE, and TB2 radiolabeling. The metabolism of exogenous [14C] arachidonic acid was much less affected by PHA. Since PHA releases cell-bound arachidonic acid, it appears that the response involving endogenous label is due to increased availability of free arachidonic acid rather than induction of arachidonic acid-metabolizing enzymes. Various inhibitors of arachidonic acid metabolism exerted similar effects in lymphocytes to those described previously in other tissues providing a possible basis for interpreting their inhibitory effects on mitogenesis, described in the preceding paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号