首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant protein was obtained in Escherichia coli by subcloning part of the Schizosaccharomyces pombe POL1 gene at the 3′-end of lacZ. Antibodies raised against this protein were used to identify the POL1 gene product in extracts of exponentially growing S. pombe cells. A major 170-kDa protein, whose structure and properties were typical of the catalytic subunit of eukaryotic DNA polymerases α (pol α), was detected. The same antibodies were used to trace pol α and to quantify its level during the S. pombe cell cycle. We found that pol α was present at all stages of the cycle and that its cellular pool was subject to limited (threefold) increase in G1 and S phases, with a decline to the initial level soon after. In addition, we found that a second form of pol α with slightly lower molecular weight (165 kDa) existed only during late G1 and S phases. Moreover, absence of initiation or perturbations in the course of DNA replication induced overproduction of the 165-kDa form.  相似文献   

2.
DNA polymerases alpha and delta are essential enzymes believed to play critical roles in initiation and replication of chromosome DNA. In this study, we show that the genes for Schizosaccharomyces pombe (S.pombe) DNA polymerase alpha and delta (pol alpha+ and pol delta+) are essential for cell viability. Disruption of either the pol alpha+ or pol delta+ gene results in distinct terminal phenotypes. The S.pombe pol delta+ gene is able to complement the thermosensitive cdc2-2 allele of Saccharomyces cerevisiae (S.cerevisiae) at the restrictive temperature. By random mutagenesis in vitro, we generated three pol delta conditional lethal alleles. We replaced the wild type chromosomal copy of pol delta+ gene with the mutagenized sequence and characterized the thermosensitive alleles in vivo. All three thermosensitive mutants exhibit a typical cell division cycle (cdc) terminal phenotype similar to that of the disrupted pol delta+ gene. Flow cytometric analysis showed that at the nonpermissive temperature all three mutants were arrested in S phase of the cell cycle. The three S.pombe conditional pol delta alleles were recovered and sequenced. The mutations causing the thermosensitive phenotype are missense mutations. The altered amino acid residues are uniquely conserved among the known polymerase delta sequences.  相似文献   

3.
H Park  R Davis    T S Wang 《Nucleic acids research》1995,23(21):4337-4344
The status of Schizosaccharomyces pombe (fission yeast) DNA polymerase alpha was investigated at different stages of the cell cycle. S.pombe DNA polymerase alpha is a phosphoprotein, with serine being the exclusive phosphoamino acid. By in vivo pulse labeling experiments DNA polymerase alpha was found to be phosphorylated to a 3-fold higher level in late S phase cells compared with cells in the G2 and M phases, but the steady-state level of phosphorylation did not vary significantly during the cell cycle. Tryptic phosphopeptide mapping demonstrated that the phosphorylation sites of DNA polymerase alpha from late S phase cells were not the same as that from G2/M phase cells. DNA polymerase alpha partially purified from G1/S cells had a different mobility in native gels from that from G2/M phase cells. The partially purified polymerase alpha from G1/S phase cells had a higher affinity for single-stranded DNA than that from G2/M phase cells. Despite the apparent differences in cell cycle-dependent phosphorylation, mobility in native gels and affinity for DNA, the in vitro enzymatic activity of the partially purified DNA polymerase alpha did not appear to vary during the cell cycle. The possible biological significance of these cell cycle-dependent characteristics of DNA polymerase alpha is discussed.  相似文献   

4.
5.
6.
N H Waseem  K Labib  P Nurse    D P Lane 《The EMBO journal》1992,11(13):5111-5120
Five monoclonal antibodies raised against rat PCNA cross-reacted with a similar protein in the fission yeast Schizosaccharomyces pombe. One of these was used to screen an S.pombe cDNA expression library. An incomplete cDNA was isolated and used to screen a genomic library, identifying a single gene, designated pcn1+ (proliferating cell nuclear antigen). The gene encodes a protein of 260 amino acids, with a deduced sequence 52% identical to human and rat PCNAs, which are 98.5% identical to each other. The budding yeast PCNA homologue POL30 is only 35% identical to the human and rat proteins. Pcn1 has a region near the C-terminus of particularly high homology to higher eukaryotic PCNA proteins. pcn1+ is essential for viability and delta pcn1 cells undergo aberrant DNA replication before cell cycle arrest. Overproduction of the protein leads to cell cycle delay in G2. Disruption of pcn1+ is complemented by the human PCNA gene, demonstrating that these genes are functional homologues.  相似文献   

7.
Summary The POL1 gene of the fission yeast, Schizosaccharomyces pombe, was isolated using a POL1 gene probe from the budding yeast Saccharomyces cerevisiae, cloned and sequenced. This gene is unique and located on chromosome II. It includes a single 91 by intron and is transcribed into a mRNA of about 4500 nucleotides. The predicted protein coded for by the S. pombe POL1 gene is 1405 amino acid long and its calculated molecular weight is about 160000 daltons. This peptide contains seven amino acid blocks conserved among several DNA polymerases from different organisms and shares overall 37% and 34% identity with DNA polymerases alpha from S. cerevisiae and human cells, respectively. These results indicate that this gene codes for the S. pombe catalytic subunit of DNA polymerase alpha. The comparisons with human DNA polymerase alpha and with the budding yeast DNA polymerases alpha, delta and epsilon reveal conserved blocks of amino acids which are structurally and/or functionally specific only for eukaryotic alpha-type DNA polymerases.  相似文献   

8.
The nuclear-encoded DNA polymerase γ (DNA POLγ) is the sole DNA polymerase required for the replication of the mitochondrial DNA. We have cloned the cDNA for human DNA POLγ and have mapped the gene to the chromosomal location 15q24. Additionally, the DNA POLγ gene fromDrosophila melanogasterand a partial cDNA for DNA POLγ fromGallus gallushave been cloned. The predicted human DNA POLγ polypeptide is 1239 amino acids, with a calculated molecular mass of 139.5 kDa. The human amino acid sequence is 41.6, 43.0, 48.7, and 77.6% identical to those ofSchizosaccharomyces pombe, Saccharomyces cerevisiae, Drosophila melanogaster,and the C-terminal half ofG. gallus,respectively. Polyclonal antibodies raised against the polymerase portion of the protein reacted specifically with a 140-kDa protein in mitochondrial extracts and immunoprecipitated a protein with DNA POLγ like activity from mitochondrial extracts. The human DNA POLγ is unique in that the first exon of the gene contains a CAG10trinucleotide repeat.  相似文献   

9.
Identification of a fourth subunit of mammalian DNA polymerase delta   总被引:3,自引:0,他引:3  
A 12-kDa and two 25-kDa polypeptides were isolated with highly purified calf thymus DNA polymerase delta by conventional chromatography. A 16-mer peptide sequence was obtained from the 12-kDa polypeptide which matched a new open reading frame from a human EST () encoding a hypothetical protein of unknown function. The protein was designated as p12. Human EST was identified as the putative human homologue of Schizosaccharomyces pombe Cdm1 by a tBlastn search of the EST data base using S. pombe Cdm1. The open reading frame of human EST encoded a polypeptide of 107 amino acids with a predicted molecular mass of 12.4 kDa, consistent with the experimental findings. p12 is 25% identical to S pombe Cdm1. Both of the 25-kDa polypeptide sequences matched the hypothetical KIAA0039 protein sequence, recently identified as the third subunit of pol delta. Western blotting of immunoaffinity purified calf thymus pol delta revealed the presence of p125, p50, p68 (the KIAA0039 product), and p12. With the identification of p12 mammalian pol delta can now be shown to consist of four subunits. These studies pave the way for more detailed analysis of the possible functions of the mammalian subunits of pol delta.  相似文献   

10.
11.
The budding yeast Saccharomyces cerevisiae is proving to be an useful and accurate model for eukaryotic DNA replication. It contains both DNA polymerase alpha (I) and delta (III). Recently, proliferating cell nuclear antigen (PCNA), which in mammalian cells is an auxiliary subunit of DNA polymerase delta and is essential for in vitro leading strand SV40 DNA replication, was purified from yeast. We have now cloned the gene for yeast PCNA (POL30). The gene codes for an essential protein of 29 kDa, which shows 35% homology with human PCNA. Cell cycle expression studies, using synchronized cells, show that expression of both the PCNA (POL30) and the DNA polymerase delta (POL3, or CDC2) genes of yeast are regulated in an identical fashion to that of the DNA polymerase alpha (POL1) gene. Thus, steady state mRNA levels increase 10-100-fold in late G1 phase, peak in early S-phase, and decrease to low levels in late S-phase. In addition, in meiosis mRNA levels increase prior to initiation of premeiotic DNA synthesis.  相似文献   

12.
13.
Base excision repair is an important mechanism for correcting DNA damage produced by many physical and chemical agents. We have examined the effects of the REV3 gene and the DNA polymerase genes POL1, POL2, and POL3 of Saccharomyces cerevisiae on DNA repair synthesis is nuclear extracts. Deletional inactivation of REV3 did not affect repair synthesis in the base excision repair pathway. Repair synthesis in nuclear extracts of pol1, pol2, and pol3 temperature-sensitive mutants was normal at permissive temperatures. However, repair synthesis in pol2 nuclear extracts was defective at the restrictive temperature of 37 degrees C and could be complemented by the addition of purified yeast DNA polymerase epsilon. Repair synthesis in pol1 nuclear extracts was proficient at the restrictive temperature unless DNA polymerase alpha was inactivated prior to the initiation of DNA repair. Thermal inactivation of DNA polymerase delta in pol3 nuclear extracts enhanced DNA repair synthesis approximately 2-fold, an effect which could be specifically reversed by the addition of purified yeast DNA polymerase delta to the extract. These results demonstrate that DNA repair synthesis in the yeast base excision repair pathway is catalyzed by DNA polymerase epsilon but is apparently modulated by the presence of DNA polymerases alpha and delta.  相似文献   

14.
15.
16.
17.
18.
The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RFC, and Escherichia coli single strand DNA-binding protein (SSB) and required the presence of ATP. "Passive" self-loading of PCNA onto DNA takes place in the absence of RFC, in an ATP-independent reaction, which was strongly inhibited by SSB. The nucleotide substitution error rate for pol delta holoenzyme (HE) (pol delta + PCNA + RFC) was 4.6 x 10(-4) for T.G mispairs, 5.3 x 10(-5) for G.G mispairs, and 4.5 x 10(-6) for A.G mispairs. The T.G misincorporation frequency for pol delta without the accessory proteins was unchanged. The fidelity of pol delta HE was between 1 and 2 orders of magnitude lower than that measured for the E. coli pol III HE at the same template position. This relatively low fidelity was caused by inefficient proofreading by the S. pombe polymerase-associated proofreading exonuclease. The S. pombe 3'-exonuclease activity was also extremely inefficient in excising primer-3'-terminal mismatches in the absence of dNTP substrates and in hydrolyzing single-stranded DNA. A comparison of pol delta HE with E. coli pol IIIalpha HE (lacking the proofreading exonuclease subunit) showed that both holoenzymes exhibit similar error rates for each mispair.  相似文献   

19.
An antifungal antibiotic, leptomycin B (LMB), which induced cell elongation of fission yeast, Schizosaccharomyces pombe, was found to be a unique inhibitor of the cell cycle of mammalian and fission yeast cells. Proliferation of rat 3Y1 fibroblasts was reversibly blocked by LMB in both the G1 and G2 phases and the treated cells were presumably introduced into the resting state (GO). After removal of LMB, proliferative tetraploid cells were produced from the cells which had been arrested by LMB at the G2 phase, as a result of DNA replication without passage through the M phase. LMB also inhibited the proliferation of S. pombe in both the G1 and G2 phases. These results suggest that the molecular target of LMB is one of the components necessary for progression of both G1 and G2 in the eukaryotic cell cycle.  相似文献   

20.
Y Zhao  J Cao  M R O'Gorman  M Yu    R Yogev 《Journal of virology》1996,70(9):5821-5826
The human immunodeficiency virus type 1 (HIV-1) Vpr protein affects cell morphology and prevents proliferation of human cells by induction of cell cycle G2 arrest. In this study, we used the fission yeast Schizosaccharomyces pombe as a model system to investigate the cellular effects of HIV-1 vpr gene expression. The vpr gene was cloned into an inducible fission yeast gene expression vector and expressed in wild-type S. pombe cells, and using these cells, we were able to demonstrate the specific Vpr-induced effects by induction and suppression of vpr gene expression. Induction of HIV-1 vpr gene expression affected S. pombe at the colonial, cellular, and molecular levels. Specifically, Vpr induced small-colony formation, polymorphic cells, growth delay, and cell cycle G2 arrest. Additionally, Vpr-induced G2 arrest appeared to be independent of cell size and morphological changes. The cell cycle G2 arrest correlated with increased phosphorylation of p34cdc2, suggesting negative regulation of mitosis by HIV-1 Vpr. Treatment of Vpr-induced cell with a protein phosphatase inhibitor, okadaic acid, transiently suppressed cell cycle arrest and morphological changes. This observation implicates possible involvement of protein phosphatase(s) in the effects of Vpr. Together, these data showed that the HIV-1 Vpr-induced cellular changes in S. pombe are similar to those observed in human cells. Therefore, the S. pombe system is suited for further investigation of the HIV-1 vpr gene functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号