首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the highly selective modification of the alpha-amino groups at the N-termini of unprotected peptides to form stable, modified peptide intermediates which can be covalently coupled to other molecules or to a solid support. Acylation with iodoacetic anhydride at pH 6.0 occurs with 90-98% selectivity for the alpha-amino group, depending on the N-terminal residue (as shown with a series of model hexapeptides containing a competing Lys residue). Although Cys residues must be protected (reversibly or irreversibly) before the anhydride reaction, there are no detectable side reactions of the alpha-amino moiety--of the reagent or of modified peptide--with the side chains of His, Met, or Lys. The reaction works well in denaturants, so that inhibitory effects of noncovalent structure can be minimized. In a second step the iodoacetyl-peptide can be reacted with a thiol group on a protein, on a solid chromatography matrix, on a spectroscopic probe, etc. This is illustrated by reaction of a series of N alpha-iodoacetyl-peptides with murine interferon-gamma, which contains a C-terminal Cys residue. Data are presented which suggest that this iodoacetic anhydride scheme is superior in selectivity for alpha-amino groups to conventional chemical approaches to cross-linking such as use of 2-iminothiolane or N-hydroxysuccinimide-activated carboxylic acid esters. The reaction is ideally suited for modifying peptide fragments, as pure species or as mixtures, derived from proteolytic or chemical fragmentation of proteins. Furthermore, polypeptides synthesized biosynthetically, for example via recombinant DNA techniques, can be cross-linked in this way.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The Escherichia coli Ada protein repairs O6-methylguanine residues and methyl phosphotriesters in DNA by direct transfer of the methyl group to a cysteine residue located in its C- or N-terminal domain, respectively. Methyl transfer to the N-terminal domain causes it to acquire a sequence-specific DNA binding activity, which directs binding to the regulatory region of several methylation-resistance genes. In this paper we show that the N-terminal domain of Ada contains a high-affinity binding site for a single zinc atom, whereas the C-terminal domain is free of zinc. The metal-binding domain is apparently located within the first 92 amino acids of Ada, which contains four conserved cysteine residues. We propose that these four cysteines serve as the zinc ligand residues, coordinating the metal in a tetrahedral arrangement. One of the putative ligand residues, namely, Cys69, also serves as the acceptor site for a phosphotriester-derived methyl group. This raises the possibility that methylation-dependent ligand reorganization about the metal plays a role in the conformational switching mechanism that converts Ada from a non-sequence-specific to a sequence-specific DNA-binding protein.  相似文献   

3.
Maize HMGB1 is a typical member of the family of plant chromosomal HMGB proteins, which have a central high-mobility group (HMG)-box DNA-binding domain that is flanked by a basic N-terminal region and a highly acidic C-terminal domain. The basic N-terminal domain positively influences various DNA interactions of the protein, while the acidic C-terminal domain has the opposite effect. Using DNA-cellulose binding and electrophoretic mobility shift assays, we demonstrate that the N-terminal basic domain binds DNA by itself, consistent with its positive effects on the DNA interactions of HMGB1. To examine whether the negative effect of the acidic C-terminal domain is brought about by interactions with the basic part of HMGB1 (N-terminal region, HMG-box domain), intramolecular cross-linking in combination with formic acid cleavage of the protein was used. These experiments revealed that the acidic C-terminal domain interacts with the basic N-terminal domain. The intramolecular interaction between the two oppositely charged termini of the protein is enhanced when serine residues in the acidic tail of HMGB1 are phosphorylated by protein kinase CK2, which can explain the negative effect of the phosphorylation on certain DNA interactions. In line with that, covalent cross-linking of the two terminal domains resulted in a reduced affinity of HMGB1 for linear DNA. Comparable to the finding with maize HMGB1, the basic N-terminal and the acidic C-terminal domains of the Arabidopsis HMGB1 and HMGB4 proteins interact, indicating that these intramolecular interactions, which can modulate HMGB protein function, generally occur in plant HMGB proteins.  相似文献   

4.
The gene product 61 primase protein from bacteriophage T4 was expressed as an intein fusion and purified to homogeneity. The primase binds one zinc ion, which is coordinated by four cysteine residues to form a zinc ribbon motif. Factors that influence the rate of priming were investigated, and a physiologically relevant priming rate of approximately 1 primer per second per primosome was achieved. Primase binding to the single-stranded binding protein (1 primase:4 gp32 monomers; K(d) approximately 860 nM) and to the helicase protein in the presence of DNA and ATP-gamma-S (1 primase:1 helicase monomer; K(d) approximately 100 nM) was investigated by isothermal titration calorimetry (ITC). Because the helicase is hexameric, the inferred stoichiometry of primase binding as part of the primosome is helicase hexamer:primase in a ratio of 1:6, suggesting that the active primase, like the helicase, might have a ring-like structure. The primase is a monomer in solution but binds to single-stranded DNA (ssDNA) primarily as a trimer (K(d) approximately 50-100 nM) as demonstrated by ITC and chemical cross-linking. Magnesium is required for primase-ssDNA binding. The minimum length of ssDNA required for stable binding is 22-24 bases, although cross-linking reveals transient interactions on oligonucleotides as short as 8 bases. The association is endothermic at physiologically relevant temperatures, which suggests an overall gain in entropy upon binding. Some possible sources of this gain in entropy are discussed.  相似文献   

5.
6.
The En/Spm-encoded TNPA protein binds to 12-bp DNA sequence motifs that are present in the sub-termini of the transposable element. DNA binding of TNPA to monomeric and dimeric forms of the binding motif was analyzed by gel retardation and cross-linking studies. A DNA binding domain at the N-terminal and a dimerization domain at the C-terminal portion of TNPA were localized using deletion derivatives of TNPA. These domains are novel since no apparent homology has been found in the data bases. The stoichiometry of the TNPA-DNA complexes was analyzed. A special complex is formed with a tail-to-tail dimeric DNA binding motif, most probably involving two DNA-bound TNPA molecules that interact via their dimerization domains. In redox reactions the requirement for one or two disulfide bonds for DNA binding of TNPA was shown. The implications of these findings for the excision mechanism of En/Spm are discussed.  相似文献   

7.
8.
A new method for intermolecular cross-linking or bridging of protein has been proposed. The method is based on the spontaneous chelate formation process involving three components, salicylaldehyde, alpha-amino acid residue and copper(II). Reliability of the process as a tool for protein cross-linking was evaluated by chromatographic procedures. Behavior of salicylaldehyde in a column packed with Sepharose attached alpha-amino acid residue showed that salicylaldehyde was bound tightly to the gel in the presence of copper(II) ion and was eluted by the addition of EDTA. The association was shown strong enough to be applied for the purpose of cross-linking of proteins. It was also proved that BSA salicylaldehyde conjugate was immobilized specifically to the column, and the process was reversed by the addition of EDTA as well. The method is proposed to be useful not only for immobilization of enzyme but also for cross-linking of proteins since the method is free from unexpected random coupling products which are unavoidable with bifunctional cross-linking reagents.  相似文献   

9.
Nagaoka M  Shiraishi Y  Uno Y  Nomura W  Sugiura Y 《Biochemistry》2002,41(28):8819-8825
In the typical base recognition mode of the C(2)H(2)-type zinc finger, the amino acid residues at alpha-helical positions -1, 3, and 6 make a contact with the base in one strand (the primary strand), and the residue at position 2 interacts with the base in a complementary strand (the secondary strand). The N-terminal zinc finger of the three-zinc-finger domain of Sp1 has inherently a unique five-base-pair binding mode in which the guanine bases are recognized in both strands. To clarify the effect of the amino acid at position 2 on DNA binding affinity and base specificity, we have created a library of the mutants by the interconversion between serine and aspartic acid in the N-terminal zinc finger of Sp1 and recombinant variants of finger order. Gel mobility shift and methylation interference assays showed that the combination of arginine and serine at positions -1 and 2, respectively, provides a newly strong guanine contact in the secondary strand and a higher binding affinity than that of wild-type Sp1. Of special interest are the facts that the mutant with lysine and aspartic acid at positions -1 and 2 in the alpha helix predominantly recognizes the bases in the secondary strand and that its DNA binding affinity is higher than that of the wild-type. The aspartic acid or serine at position 2 independently contributes to the DNA binding affinity and base specificity. The present results provide useful information for the design of a novel zinc finger protein with priority for the bases in the secondary strand.  相似文献   

10.
11.
The utilization of prolyl peptides by Escherichia coli   总被引:4,自引:0,他引:4  
Peptides that have an N-terminal proline residue are taken up by Escherichia coli and are degraded by intracellular peptidases. A mutant that is unable to transport oligopeptides with N-terminal alpha-amino acids is also unable to transport the peptides with N-terminal proline. Dipeptides and oligopeptides can prevent the uptake of the corresponding prolyl peptides and the converse competitive interactions are also observed. Although the peptide alpha-amino group is essential to the process of peptide transport, the results with the prolyl peptides indicate that the dipeptide and oligopeptide permeases can handle peptides with either an alpha-amino or alpha-imino group.  相似文献   

12.
Notexin from Notechis scutatus scutatus snake venom was modified with trinitrobenzenesulfonic acid, and the major trinitrophenylated (TNP) derivative was separated by high-performance liquid chromatography. Modification resulted in the incorporation of only one TNP group on the N-terminal alpha-amino group. The TNP derivative showed a precipitous decrease in enzymatic activity and lethal toxicity, whereas the antigenicity remained unchanged. However, trinitrophenylation did not significantly affect the secondary structure of the toxin molecule as revealed by the CD spectra. The results, that the modification reaction was accelerated by the Ca2+ and that the TNP derivative retains its affinity for Ca2+, indicate that the N-terminal alpha-amino group did not participate in the Ca2(+)-binding. The TNP derivative could be regenerated with hydrazine hydrochloride. The biological activities of the regenerated notexin are almost the same as those of native notexin. These results suggest that the N-terminal alpha-amino group is essential for the phospholipase A2 activity and lethal toxicity of notexin, and that incorporation of the TNP group on the N-terminal alpha-amino group might give rise to a distortion of the active conformation of notexin.  相似文献   

13.
Many prokaryotic and eukaryotic DNA-binding proteins use a helix-turn-helix (HTH) structure for DNA recognition. Here we describe a new family of eukaryotic HTH proteins, the Pipsqueak (Psq) family, which includes proteins from fungi, sea urchins, nematodes, insects, and vertebrates. Three subgroups of the Psq family can be distinguished. Like the HTH proteins of the prokaryotic resolvase family, members of the CENP-B/transposase subgroup catalyze site-specific recombination reactions. This functional conservation, together with a primary sequence similarity between the resolvase and Psq DNA-binding domains, suggests that the resolvase and Psq families are evolutionarily linked. More than half of the newly identified Drosophila Psq proteins contain a BTB protein-protein interaction domain. All proteins of this BTB subgroup belong to the conserved Tramtrack group of BTB-domain proteins. About half of the members of the Tramtrack group contain a Psq domain, while the other half is made up of proteins that contain a zinc finger domain. Thus, nearly all members of this group appear to be DNA-binding proteins. Among other developmental regulators, the Drosophila cell death protein E93 was found to contain a Psq motif and to define a third subgroup of Psq domain proteins. The high sequence conservation of the E93 Psq motif allowed the identification of E93 orthologs in humans and lower metazoans.  相似文献   

14.
15.
Methodology based on tRNA mediated protein engineering is described for the introduction of fluorophores and other labels at the N-terminus of proteins produced in cell-free translation systems. One method for low-level (trace) N-terminal labeling is based on the use of an Escherichia coli initiator tRNA(fMet) misaminoacylated with methionine modified at the alpha-amino group. In addition to the normal formyl group, the protein translational machinery incorporates the fluorophore BODIPY-FL and the affinity tag biotin at an N-terminal end of the nascent protein. A second method for higher N-terminal labeling uses a chemically aminoacylated amber initiator suppressor tRNA and a DNA template which contains a complementary amber (UAG) codon instead of the normal initiation (AUG) codon. This more versatile approach is demonstrated using a variety of N-terminal markers including fluorescein, biotin, PC-biotin, and a novel dual marker conjugate (Biotin/BODIPY-FL).  相似文献   

16.
Sulfhydryl cross-linking poly(ethylene glycol) (PEG)-peptides and glycopeptides were prepared and tested for spontaneous polymerization by disulfide bond formation when bound to plasmid DNA, resulting in stable PEG-peptide and glycopeptide DNA condensates. A 20 amino acid synthetic peptide possessing a single sulfhydryl group on the N-terminal cysteine, with two or five internal acetamidomethyl (Acm)-protected cysteine residues, was reacted with either PEG vinyl sulfone or iodoacetamide tyrosinamide triantennary N-glycan. Following RP-HPLC purification, Acm groups were removed by silver tetrafluoroborate to generate sulfhydryl cross-linking PEG-peptides and glycopeptide that were characterized by either (1)H NMR or LC-MS. Sulfhydryl cross-linking PEG-peptides and glycopeptides were found to bind to plasmid DNA and undergo disulfide cross-linking resulting in stable DNA condensates with potential utility for in vivo gene delivery.  相似文献   

17.
Ribosomal protein L11 is a universally conserved component of the large subunit, and plays a significant role during initiation, elongation, and termination of protein synthesis. In Escherichia coli, the lysine methyltransferase PrmA trimethylates the N-terminal alpha-amino group and the epsilon-amino groups of Lys3 and Lys39. Here, we report four PrmA-L11 complex structures in different orientations with respect to the PrmA active site. Two structures capture the L11 N-terminal alpha-amino group in the active site in a trimethylated post-catalytic state and in a dimethylated state with bound S-adenosyl-L-homocysteine. Two other structures show L11 in a catalytic orientation to modify Lys39 and in a noncatalytic orientation. The comparison of complex structures in different orientations with a minimal substrate recognition complex shows that the binding mode remains conserved in all L11 orientations, and that substrate orientation is brought about by the unusual interdomain flexibility of PrmA.  相似文献   

18.
19.
20.
Conformation states of Xenopus transcription factor IIIA   总被引:4,自引:0,他引:4  
J S Hanas  A L Duke  C J Gaskins 《Biochemistry》1989,28(9):4083-4088
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号