首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S-Nitrosylation of platelet alphaIIbbeta3 as revealed by Raman spectroscopy   总被引:1,自引:0,他引:1  
The exact mechanisms regulating conformational changes in the platelet-specific integrin alphaIIbbeta3 are not fully understood. However, a role exists for thiol/disulfide exchange in integrin conformational changes leading to altered disulfide bonding patterns, via its endogenous thiol isomerase activity. Nitric oxide (NO) accelerates this intrinsic enzymatic activity and, in doing so, reverses the activational state of the integrin on the platelet surface toward a more unactivated one. We propose that it is an S-nitrosylation-induced "shuffling" of thiol/disulfide exchange that regulates this reversal of the activated state of the integrin. In this study, we use Raman spectroscopy to explore S-nitrosylation of purified alphaIIbbeta3. Using S-nitrosoglutathione (GSNO) as a model system, we identify Raman markers which show a direct interaction between NO and the thiol groups of the integrin and reveal many of the structural changes that occur in alphaIIbbeta3 in the course of not only its activation but also its deactivation. Key conformational changes are detected within the integrin when treated with manganese (Mn2+), occurring mainly in the cysteine and disulfide regions of the protein, confirming the importance of thiol/disulfide exchange in integrin activation. These changes are subsequently shown to be reversed in the presence of NO.  相似文献   

2.
Raman spectra have been observed of nucleosome core particles (I) prepared from chicken erythrocyte chromatin, its isolated 146 bp DNA (II), and its isolated histone octamer (H2A+H2B+H3+H4)2 (III). By examining the difference Raman spectra, (I)-(II), (I)-(III), and (I)-(II)-(III), several pieces of information have been obtained on the conformation of the DNA moiety, the conformation of the histone moiety, and the DNA-histone interaction in the nucleosome core particles. In the nucleosome core particles, about 15 bp (A.T rich) portions of the whole 146 bp DNA are considered to take an A-form conformation. These are considered to correspond to its bent portions which appear at intervals of 10 bp.  相似文献   

3.
Hypocrellinanditsderivativesarewellknownphotosensitizers[1,2].AmongthembothhypocrellinA(HA)andhypocrellinB(HB)showpromisinganticancerandantiviralability[1—3].Inordertoinvestigateitsmechanisms,manymethodshavebeenusedtodetecttheactiveoxygensuchas1O2,O2.-,.OHandsem…  相似文献   

4.
Quinolinic acid (2,3-pyridinedicarboxylic acid), an endogenous, tryptophan metabolite, is neurotoxic when injected into rat striatum (1). To begin to investigate the molecular interactions of quinolinic acid with membranes, electron spin resonance studies of the effects of this neurotoxin on the physical state of lipids, proteins, and cell-surface sialic acid in human erythrocyte ghosts have been performed. Quinolinic acid induced a highly significant alteration in the physical state of membrane proteins (P less than 0.01) while that of sialic acid and membrane lipids was unaffected. These results are similar to those induced by ibotenic acid, an exogenous neurotoxin, and are discussed with reference to possible molecular characteristics of the interaction of these neurotoxins with membrane proteins.  相似文献   

5.
6.
Abstract. Bryozoans are among a diverse range of invertebrates capable of secreting calcium carbonate skeletons. Relatively little is known about biomineralization in bryozoans, despite the importance of understanding biomineralization processes for nanotechnology and the threats imposed by ocean acidification on organisms having calcareous skeletons. Ten species of cheilostome bryozoans that are reported to have bimineralic skeletons of calcite and aragonite are studied here using Raman spectroscopy. This technique allowed identification of the two mineral phases at submicron spatial resolution, allowing the distributions of calcite and aragonite within bryozoan skeletons to be determined with unprecedented precision. Confirming previous findings based on the use of chemical stains, most of the bimineralic species analyzed exhibited a calcitic skeletal framework, composed of basal, vertical, and inner frontal walls, having aragonite deposited subsequently onto the outer surfaces of the frontal walls. In one species ( Odontionella cyclops ), aragonite formed the superstructure above the autozooids, and in two others, traces of aragonite were detected on the undersides of the frontal shields. Using Raman spectroscopy, it was possible for the first time to determine the mineralogy of small-scale structures, including orificial rims, condyles and hinge teeth, avicularian pivotal bars and rostra, and ascopore rims and sieve plates. Even when surrounded by aragonitic frontal shields, these structures were found typically to be calcitic, the two exceptions being the aragonitic avicularia of Stylopoma inchoans and O. cyclops . Unexpectedly, the first-formed part of the basal wall at the distalmost growing edge of Pentapora foliacea was found to consist mainly of aragonite. This may point to a precursory phase of biomineralization comparable with the unusual mineralogies identified previously in the earliest-formed skeletons of members of some other invertebrate phyla.  相似文献   

7.
Membrane fluidity was studied by electron-spin-resonance techniques in human En(a-) erythrocytes that lack the major membrane sialoglycoprotein, glycophorin A. By using stearic acid spin labels with a doxyl group in the C-12 or C-15 positions, we demonstrated that the hydrophobic core in these cells was more fluid than in normal cells. Surface-located regions in isolated En(a-) membranes, when probed with stearic acid labelled in the C-5 position, appeared more stable than in normal membranes. In isolated En(a-) membranes, protein motion was decreased when probed with a nitroxide derivative of maleimide. After incubation with anti-(glycophorin A) antibodies protein motion and membrane fluidity were increased in normal membranes. This effect was observed also after spectrin depletion, which by itself increased protein motion but decreased membrane fluidity in the hydrophobic core of the membrane. The results show that membrane proteins influence the fluidity of membrane lipids.  相似文献   

8.
The molecular structures of different nerve fibers kept in good physiological conditions were studied by laser Raman spectroscopy. For myelinated nerves like the rat sciatic nerve, the Raman spectrum is dominated by bands due to the lipid component of the myelin sheath. The temperature dependence of these bands does not reveal any thermotropic phase transition between 0 and 40 degrees C. There is, however, with temperature, a linear increase in the intermolecular disorder that is accompanied by an increase in the number of gauche bonds of the phospholipid acyl chains. For unmyelinated nerves such as the lobster leg nerve, the C-H stretching region of the Raman spectrum is covered by bands arising from the protein component of the axoplasm. However, for the garfish olfactory nerve that has a high density of excitable membranes, phospholipid bands are observed and can be used as intrinsic structural probes of the excitable membranes. The relative intensity of these bands is also temperature dependent.  相似文献   

9.
10.
Summary The fine structure of the glomerular basement membrane was re-evaluated by using a deep-etch replica method.The structure of the laminae rarae interna and externa of the rat glomerular basement membrane was basically identical in that 6 to 8 nm fibrils were interconnected to form a three-dimensional, polygonal network. The size of the mesh was quite variable but most often ranged from 20 to 25 nm in width. In addition, a zipper-like substructure of the epithelial slit diaphragm was observed. By contrast, the lamina densa was composed of closely packed particles.After exposure of the bovine glomerular basement membrane to ultrasonic waves or trypsin, the particles of the lamina densa were effectively removed. The underlying structure showed the fibrillar network closely resembled that seen in the laminae rarae of the rat glomerular basement membrane.The glomerular basement membrane thus revealed was as principally composed of a fibrillar network, which might be regularly arranged units of type-IV collagen. Numerous fine particles, most likely proper components of the glomerular basement membrane, were attached onto this basic fibrillar structure, giving rise to a morphologic appearance different from that of the laminae rarae.  相似文献   

11.
The crosslinking of membrane proteins of human erythrocytes by diamide (diazene dicarboxylic acid bis(N,N-dimethylamide) ) was quantified by 4% polyacrylamide gel electrophoresis in 1% sodium dodecyl sulfate. The relation between the crosslinking of membrane proteins and erythrocyte functions (rheological and oxygen transporting) was quantitatively examined. (i) The crosslinking of membrane protein was induced by diamide, without changing the shape and the contents of intracellular organic phosphates (adenylates and 2,3-diphosphoglycerate). The intensity of spectrin 2 in SDS-polyacrylamide gel electrophoresis decreased proportionally to diamide concentration. The percentage decrease in spectrin 2 (using band 3 as an internal standard) was the most appropriate indicator for crosslinking ("% crosslinking'). (ii) The suspension viscosity of erythrocytes increased in proportion to the percentage of crosslinking, in the range of applied shear rates of 3.76-752 s-1. (iii) Erythrocyte deformability (measured by a high-shear rheoscope) was reduced by the crosslinking. The change was detectable even at 5% crosslinking. (iv) Rouleaux formation (measured by a television image analyzer combined with a low-shear rheoscope) was inhibited by the crosslinking. The inhibition was also sensitively detected at more than 5% crosslinking. (v) Hemoglobin in erythrocytes was chemically modified by higher dose of diamide (probably by the binding of diamide with sulfhydryl groups). Also the oxygen affinity of hemoglobin increased and the heme-heme interaction decreased. (vi) The reduction of the crosslinking of membrane proteins by dithiothreitol apparently reversed the intensity of spectrin bands in SDS-polyacrylamide gel electrophoresis and the erythrocyte functions (the suspension viscosity and the deformability), though not completely.  相似文献   

12.
13.
Cell membranes provide an environment that is essential to the functions of membrane proteins. Cell membranes are mainly composed of proteins and highly diverse phospholipids. The influence of diverse lipid compositions of native cell membranes on the dynamics of the embedded membrane proteins has not been examined. Here we employ solid-state NMR to investigate the dynamics of E. coli Aquaporin Z (AqpZ) in its native inner cell membranes, and reveal the influence of diverse lipid compositions on the dynamics of AqpZ by comparing it in native cell membranes to that in POPC/POPG bilayers. We demonstrate that the dynamic rigidity of AqpZ generally conserves in both native cell membranes and POPC/POPG bilayers, due to its tightly packed tetrameric structure. In the gel and the liquid crystal phases of lipids, our experimental results show that AqpZ is more dynamic in native cell membranes than that in POPC/POPG bilayers. In addition, we observe that phase transitions of lipids in native membranes are less sensitive to temperature variations compared with that in POPC/POPG bilayers, which results in that the dynamics of AqpZ is less affected by the phase transitions of lipids in native cell membranes than that in POPC/POPG bilayers. This study provides new insights into the dynamics of membrane proteins in native cell membranes.  相似文献   

14.
15.
Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.  相似文献   

16.
Current strategies for determining the structures of membrane proteins in lipid environments by NMR spectroscopy rely on the anisotropy of nuclear spin interactions, which are experimentally accessible through experiments performed on weakly and completely aligned samples. Importantly, the anisotropy of nuclear spin interactions results in a mapping of structure to the resonance frequencies and splittings observed in NMR spectra. Distinctive wheel-like patterns are observed in two-dimensional 1H-15N heteronuclear dipolar/15N chemical shift PISEMA (polarization inversion spin-exchange at the magic angle) spectra of helical membrane proteins in highly aligned lipid bilayer samples. One-dimensional dipolar waves are an extension of two-dimensional PISA (polarity index slant angle) wheels that map protein structures in NMR spectra of both weakly and completely aligned samples. Dipolar waves describe the periodic wave-like variations of the magnitudes of the heteronuclear dipolar couplings as a function of residue number in the absence of chemical shift effects. Since weakly aligned samples of proteins display these same effects, primarily as residual dipolar couplings, in solution NMR spectra, this represents a convergence of solid-state and solution NMR approaches to structure determination.  相似文献   

17.
18.
Biological membranes are composed of a complex mixture of lipids and proteins, and the membrane lipids support several key biophysical functions, in addition to their obvious structural role. Recent results from X-ray crystallography are shedding new light on the precise molecular details of the protein-lipid interface.  相似文献   

19.
Unconjugated bilirubin increasingly binds to erythrocytes as the bilirubin-to-albumin molar ratio exceeds unity, leading to toxic manifestations that can culminate in cell lysis. Our previous studies showed that bilirubin induces the release of lipids from erythrocyte membranes. In the present work, those studies were extended in order to characterize the alterations of membrane lipid composition and evaluate whether bilirubin leads to a loss of phospholipid asymmetry. To this end, human erythrocytes were incubated with several bilirubin-to-albumin molar ratios (0.5 to 5), and cholesterol as well as the total and the individual classes of phospholipids were determined. To detect erythrocytes with phosphatidylserine at the outer surface, the number of annexin V-positive cells was determined following incubation with bilirubin, fixing its molar ratio to albumin at 3. The results demonstrate profound changes in erythrocyte membrane composition, including modified cholesterol and phospholipid content. The release of membrane cholesterol, as well as of total and individual classes of phospholipids at molar ratios ≥1, indicates that damage of erythrocytes may occur in severely ill jaundiced neonates. The loss of the inner-located phospholipids, phosphatidylethanolamine and phosphatidylserine, points to a redistribution of phospholipids in the membrane bilayer. This was confirmed by the exposure of phosphatidylserine at the outer cell surface. In conclusion, this study demonstrates that bilirubin induces loss of membrane lipids and externalization of phosphatidylserine in human erythrocytes. These features may facilitate hemolysis and erythrophagocytosis, thus contributing to enhanced bilirubin production and anemia during severe neonatal hyperbilirubinemia. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Although nearly half of today's major pharmaceutical drugs target human integral membrane proteins (hIMPs), only 30 hIMP structures are currently available in the Protein Data Bank, largely owing to inefficiencies in protein production. Here we describe a strategy for the rapid structure determination of hIMPs, using solution NMR spectroscopy with systematically labeled proteins produced via cell-free expression. We report new backbone structures of six hIMPs, solved in only 18 months from 15 initial targets. Application of our protocols to an additional 135 hIMPs with molecular weight <30 kDa yielded 38 hIMPs suitable for structural characterization by solution NMR spectroscopy without additional optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号