首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 1 毫秒
1.
The anticoagulant protein C pathway   总被引:16,自引:0,他引:16  
Dahlbäck B  Villoutreix BO 《FEBS letters》2005,579(15):3310-3316
The anticoagulant protein C system regulates the activity of coagulation factors VIIIa and Va, cofactors in the activation of factor X and prothrombin, respectively. Protein C is activated on endothelium by the thrombin-thrombomodulin-EPCR (endothelial protein C receptor) complex. Activated protein C (APC)-mediated cleavages of factors VIIIa and Va occur on negatively charged phospholipid membranes and involve protein cofactors, protein S and factor V. APC also has anti-inflammatory and anti-apoptotic activities that involve binding of APC to EPCR and cleavage of PAR-1 (protease-activated receptor-1). Genetic defects affecting the protein C system are the most common risk factors of venous thrombosis. The protein C system contains multi-domain proteins, the molecular recognition of which will be reviewed.  相似文献   

2.

Background

Various forms of cell death, such as apoptotic, autophagic and non-lysosomal types, are implicated in normal physiological processes. Apoptotic protease activating factor 1 (Apaf1) is an important component of the intrinsic apoptotic pathway. Deficiency of Apaf1 results in an accumulation of neural progenitor cells (NPCs) in the developing central nervous system and thus, in perinatal lethality. A small percentage of the mutant mice, however, are viable and grow to maturity. The occurrence of such normal mutants implicates alternative cell death pathways during neurogenesis.

Methods

NPCs prepared from wild-type or Apaf1-deficient embryos were cultured in growth factor-deprived medium and examined for cell death, caspase activation and morphological alterations. Generation of reactive oxygen species (ROS) and the effects of antioxidants were examined.

Results

Wild-type NPCs underwent apoptosis within 24 hours of withdrawal of epidermal growth factor (EGF) or insulin, whereas Apaf1-deficient NPCs underwent cell death but showed no signs of apoptosis. Autophagy was not necessarily accompanied by cell death. Cell death of the Apaf1-deficient NPCs resembled necroptosis—necrosis-like programmed cell death. The necroptosis inhibitor necrostatin-1, however, failed to inhibit the cell death. ROS accumulation was detected in NPCs deprived of growth factors, and an antioxidant partially suppressed the non-apoptotic cell death of Apaf1-deficient NPCs.

Conclusions

These data indicate that after withdrawal EGF or insulin withdrawal, the Apaf1-deficient cells underwent non-apoptotic cell death. ROS generation may partially participate in the cell death.

General Significance

Non-apoptotic cell death in NPCs may be a compensatory mechanism in the developing CNS of Apaf1-deficient embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号