首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Weak organic acids are well-known metabolic effectors in yeast and other micro-organisms. High concentrations of lactic acid due to infection of lactic acid bacteria often occurs in combination with growth under nutrient-limiting conditions in industrial yeast fermentations. The effects of lactic acid on growth and product formation of Saccharomyces cerevisiae were studied, with cells growing under carbon- or nitrogen-limiting conditions in anaerobic chemostat cultures (D=0.1 h−1) at pH values 3.25 and 5. It was shown that lactic acid in industrially relevant concentrations had a rather limited effect on the metabolism of S. cerevisiae. However, there was an effect on the energetic status of the cells, i.e. lactic acid addition provoked a reduction in the adenosine triphosphate (ATP) content of the cells. The decrease in ATP was not accompanied by a significant increase in the adenosine monophosphate levels.  相似文献   

6.
The energetics of Saccharomyces cerevisiae were studied in anaerobic glucose-limited chemostat cultures via an analysis of biomass and metabolite production. The observed YATP was dependent on the composition of the biomass, the production of acetate, the extracellular pH, and the provision of an adequate amount of fatty acid in the medium. Under optimal growth conditions, the YATP was approximately 16 g biomass (mol ATP formed)-1. This is much higher than previously reported for batch cultures. Addition of acetic acid or propionic acid lowered the YATP. A linear correlation was found between the energy required to compensate for import of protons and the amount of acid added. This energy requirement may be regarded as a maintenance energy, since it was independent of the dilution rate at a given acid concentration.  相似文献   

7.
The physiology of Saccharomyces cerevisiae CBS 8066 was studied in anaerobic glucose-limited chemostat cultures in a mineral medium supplemented with ergosterol and Tween 80. The organism had a mu max of 0.31 h-1 and a Ks for glucose of 0.55 mM. At a dilution rate of 0.10 h-1, a maximal yield of 0.10 g biomass (g glucose)-1 was observed. The yield steadily declined with increasing dilution rates, so a maintenance coefficient for anaerobic growth could not be estimated At a dilution rate of 0.10 h-1, the yield of the S. cerevisiae strain H1022 was considerably higher than for CBS 8066, despite a similar cell composition. The major difference between the two yeast strains was that S. cerevisiae H1022 did not produce acetate, suggesting that the observed difference in cell yield may be ascribed to an uncoupling effect of acetic acid. The absence of acetate formation in H1022 correlated with a relatively high level of acetyl-CoA synthetase. The uncoupling effect of weak acids on anaerobic growth was confirmed in experiments in which a weak acid (acetate or propionate) was added to the medium feed. This resulted in a reduction in yield and an increase in specific ethanol production. Both yeasts required approximately 35 mg oleic acid (g biomass)-1 for optimal growth. Lower or higher concentrations of this fatty acid, supplied as Tween 80, resulted in uncoupling of dissimilatory and assimilatory processes.  相似文献   

8.
A prototrophic pyruvate-carboxylase-negative (Pyc-) mutant was constructed by deleting the PYC1 and PYC2 genes in a CEN.PK strain of Saccharomyces cerevisiae. Its maximum specific growth rate on ethanol was identical to that of the isogenic wild type but it was unable to grow in batch cultures in glucose-ammonia media. Consistent with earlier reports, growth on glucose could be restored by supplying aspartate as a sole nitrogen source. Ethanol could not replace aspartate as a source of oxaloacetate in batch cultures. To investigate whether alleviation of glucose repression allowed expression of alternative pathways for oxaloacetate synthesis, the Pyc- strain and an isogenic wild-type strain were grown in aerobic carbon-limited chemostat cultures at a dilution rate of 0.10 h-1 on mixtures of glucose and ethanol. In such mixed-substrate chemostat cultures of the Pyc- strain, steady-state growth could only be obtained when ethanol contributed 30% or more of the substrate carbon in the feed. Attempts to further decrease the ethanol content of the feed invariably resulted in washout. In Pyc- as well as in wild-type cultures, levels of isocitrate lyase, malate synthase and phospho-enol-pyruvate carboxykinase in cell extracts decreased with a decreasing ethanol content in the feed. Nevertheless, at the lowest ethanol fraction that supported growth of the Pyc- mutant, activities of the glyoxylate cycle enzymes in cell extracts were still sufficient to meet the requirement for C4-compounds in biomass synthesis. This suggests that factors other than glucose repression of alternative routes for oxaloacetate synthesis prevent growth of Pyc-mutants on glucose.  相似文献   

9.
Anaerobic starvation conditions are frequent in industrial fermentation and can affect the performance of the cells. In this study, the anaerobic carbon or nitrogen starvation response of Saccharomyces cerevisiae was investigated for cells grown in anaerobic carbon or nitrogen-limited chemostat cultures at a dilution rate of 0.1 h(-1) at pH 3.25 or 5. Lactic or benzoic acid was present in the growth medium at different concentrations, resulting in 16 different growth conditions. At steady state, cells were harvested and then starved for either carbon or nitrogen for 24 h under anaerobic conditions. We measured fermentative capacity, glucose uptake capacity, intracellular ATP content, and reserve carbohydrates and found that the carbon, but not the nitrogen, starvation response was dependent upon the previous growth conditions. All cells subjected to nitrogen starvation retained a large portion of their initial fermentative capacity, independently of previous growth conditions. However, nitrogen-limited cells that were starved for carbon lost almost all their fermentative capacity, while carbon-limited cells managed to preserve a larger portion of their fermentative capacity during carbon starvation. There was a positive correlation between the amount of glycogen before carbon starvation and the fermentative capacity and ATP content of the cells after carbon starvation. Fermentative capacity and glucose uptake capacity were not correlated under any of the conditions tested. Thus, the successful adaptation to sudden carbon starvation requires energy and, under anaerobic conditions, fermentable endogenous resources. In an industrial setting, carbon starvation in anaerobic fermentations should be avoided to maintain a productive yeast population.  相似文献   

10.
11.
12.
13.
A kinetic Monod model has been used to describe the dynamic response of a continuous stirred tank fermentor (CSTF) to changes in dilution rate. A general analytical solution of a linearized model was obtained. Experimental results (Vairo et al. 1977) of continuous anaerobic culture of Saccharomyces cerevisiae have verified the model quantitatively. For step disturbances on the dilution rate the responses of biomass concentration and the outlet substrate concentration were calculated on a digital computer and compared with the experimental data.  相似文献   

14.
15.
16.
17.
Aerobic glucose-limited chemostat cultivations were conducted with Saccharomyces cerevisiae strains NRRL Y132, ATCC 4126 and CBS 8066, using a complex medium. At low dilution rates all three strains utilised glucose oxidatively with high biomass yield coefficients, no ethanol production and very low steady-state residual glucose concentrations in the culture. Above a threshold dilution rate, respiro-fermentative (oxido-reductive) metabolism commenced, with simultaneous respiration and fermentation occurring, which is typical of Crabtree-positive yeasts. However, at high dilution rates the three strains responded differently. At high dilution rates S. cerevisiae CBS 8066 produced 7–8 g ethanol L−1 from 20 g glucose L−1 with concomitant low levels of residual glucose, which increased markedly only close to the wash-out dilution rate. By contrast, in the respiro-fermentative region both S. cerevisiae ATCC 4126 and NRRL Y132 produced much lower levels of ethanol (3–4 g L−1) than S. cerevisiae CBS 8066, concomitant with very high residual sugar concentrations, which was a significant deviation from Monod kinetics and appeared to be associated either with high growth rates or with a fermentative (or respiro-fermentative) metabolism. Supplementation of the cultures with inorganic or organic nutrients failed to improve ethanol production or glucose assimilation. Journal of Industrial Microbiology & Biotechnology (2000) 24, 231–236. Received 09 August 1999/ Accepted in revised form 18 December 1999  相似文献   

18.
Zhao Y  Lin YH 《Biotechnology letters》2003,25(14):1151-1154
Saccharomyces cerevisiae was grown in a chemostat under high glucose conditions (up to 300 g l–1). The results support the view that higher glucose feed favors higher ethanol production regardless of the existence of osmotic stress. A low glucose utilization and yield coefficient provides an opportunity to improve continuous fermentation performance in the fuel alcohol industry. The possibility exists of reusing yeast cells and subsequently lower operating costs, and by using an optimal glucose feeding concentration between 100 and 200 g l–1.  相似文献   

19.
The physiology of Saccharomyces cerevisiae CBS 8066 was studied in glucose-limited chemostat cultures. Below a dilution rate of 0.30 h-1 glucose was completely respired, and biomass and CO2 were the only products formed. Above this dilution rate acetate and pyruvate appeared in the culture fluid, accompanied by disproportional increases in the rates of oxygen consumption and carbon dioxide production. This enhanced respiratory activity was accompanied by a drop in cell yield from 0.50 to 0.47 g (dry weight) g of glucose-1. At a dilution rate of 0.38 h-1 the culture reached its maximal oxidation capacity of 12 mmol of O2 g (dry weight)-1 h-1. A further increase in the dilution rate resulted in aerobic alcoholic fermentation in addition to respiration, accompanied by an additional decrease in cell yield from 0.47 to 0.16 g (dry weight) g of glucose-1. Since the high respiratory activity of the yeast at intermediary dilution rates would allow for full respiratory metabolism of glucose up to dilution rates close to mumax, we conclude that the occurrence of alcoholic fermentation is not primarily due to a limited respiratory capacity. Rather, organic acids produced by the organism may have an uncoupling effect on its respiration. As a result the respiratory activity is enhanced and reaches its maximum at a dilution rate of 0.38 h-1. An attempt was made to interpret the dilution rate-dependent formation of ethanol and acetate in glucose-limited chemostat cultures of S. cerevisiae CBS 8066 as an effect of overflow metabolism at the pyruvate level. Therefore, the activities of pyruvate decarboxylase, NAD+- and NADP+-dependent acetaldehyde dehydrogenases, acetyl coenzyme A (acetyl-CoA) synthetase, and alcohol dehydrogenase were determined in extracts of cells grown at various dilution rates. From the enzyme profiles, substrate affinities, and calculated intracellular pyruvate concentrations, the following conclusions were drawn with respect to product formation of cells growing under glucose limitation. (i) Pyruvate decarboxylase, the key enzyme of alcoholic fermentation, probably already is operative under conditions in which alcoholic fermentation is absent. The acetaldehyde produced by the enzyme is then oxidized via acetaldehyde dehydrogenases and acetyl-CoA synthetase. The acetyl-CoA thus formed is further oxidized in the mitochondria. (ii) Acetate formation results from insufficient activity of acetyl-CoA synthetase, required for the complete oxidation of acetate. Ethanol formation results from insufficient activity of acetaldehyde dehydrogenases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Regulation of fermentative capacity was studied in chemostat cultures of two Saccharomyces cerevisiae strains: the laboratory strain CEN.PK113-7D and the industrial bakers’ yeast strain DS28911. The two strains were cultivated at a fixed dilution rate of 0.10 h−1 under various nutrient limitation regimes: aerobic and anaerobic glucose limitation, aerobic and anaerobic nitrogen limitation on glucose, and aerobic ethanol limitation. Also the effect of specific growth rate on fermentative capacity was compared in glucose-limited, aerobic cultures grown at dilution rates between 0.05 h−1 and 0.40 h−1. Biomass yields and metabolite formation patterns were identical for the two strains under all cultivation conditions tested. However, the way in which environmental conditions affected fermentative capacity (assayed off-line as ethanol production rate under anaerobic conditions) differed for the two strains. A different regulation of fermentative capacity in the two strains was also evident from the levels of the glycolytic enzymes, as determined by in vitro enzyme assays. With the exception of phosphofructokinase and pyruvate decarboxylase in the industrial strain, no clear-cut correlation between the activities of glycolytic enzymes and the fermentative capacity was found. These results emphasise the need for controlled cultivation conditions in studies on metabolic regulation in S. cerevisiae and demonstrate that conclusions from physiological studies cannot necessarily be extrapolated from one S. cerevisiae strain to the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号