首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of homolog pairing is well characterised in meiosis of male mammals, but much less information is available from female meiosis. We have therefore studied telomere dynamics by FISH and synapsis formation by immunostaining of synaptonemal complex proteins (SCP3, SCP1) on ovarian sections from 15 bovine fetuses, which covered the entire female prophase I. Telomeres displayed a dispersed intranuclear distribution in oogonia and relocated to the nuclear periphery during the preleptotene stage. Tight telomere clustering (bouquet formation) coincided with synapsis initiation at the leptotene/zygotene transition. Clustering of telomeres persisted during zygotene and even into the pachytene stage in a subset of nuclei, while it was absent in diplotene/dictyotene stage nuclei. Thus, the bouquet stage in the bovine female lasts significantly longer than in the male. Further, we observed that synapsis in the female initiated both terminally and interstitially in earliest zygotene stage oocytes, which contrasts with the predominantly terminal synapsis initiation in early zygotene spermatocytes of the bovine male. Altogether, our data disclose a sex-specific difference in telomere dynamics and synapsis initiation patterns in male and female bovine germ cells that may be related to the sex-specific differences in recombination rates observed in this and other mammalian species.  相似文献   

2.
《The Journal of cell biology》1996,134(5):1109-1125
The preconditions and early steps of meiotic chromosome pairing were studied by fluorescence in situ hybridization (FISH) with chromosome- specific DNA probes to mouse and human testis tissue sections. Premeiotic pairing of homologous chromosomes was not detected in spermatogonia of the two species. FISH with centromere- and telomere- specific DNA probes in combination with immunostaining (IS) of synaptonemal complex (SC) proteins to testis sections of prepuberal mice at days 4-12 post partum was performed to study sequentially the meiotic pairing process. Movements of centromeres and then telomeres to the nuclear envelope, and of telomeres along the nuclear envelope leading to the formation of a chromosomal bouquet were detected during mouse prophase. At the bouquet stage, pairing of a mouse chromosome-8- specific probe was observed. SC-IS and simultaneous telomere FISH revealed that axial element proteins appear as large aggregates in mouse meiocytes when telomeres are attached to the nuclear envelope. Axial element formation initiates during tight telomere clustering and transverse filament-IS indicated the initiation of synapsis during this stage. Comparison of telomere and centromere distribution patterns of mouse and human meiocytes revealed movements of centromeres and then telomeres to the nuclear envelope and subsequent bouquet formation as conserved motifs of the pairing process. Chromosome painting in human spermatogonia revealed compacted, largely mutually exclusive chromosome territories. The territories developed into long, thin threads at the onset of meiotic prophase. Based on these results a unified model of the pairing process is proposed.  相似文献   

3.
4.

Sirtuins are NAD+-dependent protein deacylases and ADP-ribosyltransferases that are involved in a wide range of cellular processes including genome homeostasis and metabolism. Sirtuins are expressed in human and mouse oocytes yet their role during female gamete development are not fully understood. Here, we investigated the role of a mammalian sirtuin member, SIRT7, in oocytes using a mouse knockout (KO) model. Sirt7 KO females have compromised fecundity characterized by a rapid fertility decline with age, suggesting the existence of a diminished oocyte pool. Accordingly, Sirt7 KO females produced fewer oocytes and ovulated fewer eggs. Because of the documented role of SIRT7 in DNA repair, we investigated whether SIRT7 regulates prophase I when meiotic recombination occurs. Sirt7 KO pachynema-like staged oocytes had approximately twofold increased γH2AX signals associated with regions with unsynapsed chromosomes. Consistent with the presence of asynaptic chromosome regions, Sirt7 KO oocytes had fewer MLH1 foci (~one less), a mark of crossover-mediated repair, than WT oocytes. Moreover, this reduced level of crossing over is consistent with an observed twofold increased incidence of aneuploidy in Metaphase II eggs. In addition, we found that acetylated lysine 18 of histone H3 (H3K18ac), an established SIRT7 substrate, was increased at asynaptic chromosome regions suggesting a functional relationship between this epigenetic mark and chromosome synapsis. Taken together, our findings demonstrate a pivotal role for SIRT7 in oocyte meiosis by promoting chromosome synapsis and have unveiled the importance of SIRT7 as novel regulator of the reproductive lifespan.

  相似文献   

5.
During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast. Pds5 colocalizes with cohesin along the length of meiotic chromosomes. In the absence of Pds5, the meiotic cohesin subunit Rec8 remains bound to chromosomes with only minor defects in sister chromatid cohesion, but sister chromatids synapse instead of homologues. Double-strand breaks (DSBs) are formed but are not repaired efficiently. In addition, meiotic chromosomes undergo hypercondensation. When the mitotic cohesin subunit Mcd1 is substituted for Rec8 in Pds5-depleted cells, chromosomes still hypercondense, but synapsis of sister chromatids is abolished. These data suggest that Pds5 modulates the Rec8 activity to facilitate chromosome morphological changes required for homologue synapsis, DSB repair, and meiotic chromosome segregation.  相似文献   

6.
7.
The behavior of large, distal, C-heterochromatic blocks in the spermatogenesis of the grey cockroach Nauphoeta cinerea was investigated by light and electron microscopy. In early meiotic prophase I, heterochromatic blocks of some autosomes are involved in the nonhomologous association and form a chromocenter. Fluorescent in situ hybridization (FISH) with a ribosomal DNA (rDNA) probe revealed the signal on only two pairs of middle chromosomes not engaged in the chromocenter formation; therefore, ectopic conjugation was not caused by the formation of a nucleolus. Analysis showed that chromocentric heterochromatin does not participate (functionally or spatially) in basic meiotic events. Heterochromatin does not participate in the formation of a bouquet, initiation of homologous synapsis, or recombination events. The chromocenter disintegrates at the end of the pachytene when synapsis is totally completed. Heterochromatin polymorphism results in asymmetric synaptonemal complexes (SCs) with different degrees of synaptic adjustment. The axis of the sex univalent (male sex determination is XO) is split in various sites, regardless of heterochromatin localization.  相似文献   

8.
A kinetics study has demonstrated histone synthesis occurring at two distinct phases during meiotic prophase of mouse spermatogenesis. These two periods have been delineated by quantifying the synthesis of DNA and basic nuclear proteins in spermatogenic cells at discrete intervals following the intratesticular injection of [3H] thymidine and [14C] arginine, respectively. One phase of histone synthesis occurs coincident with DNA synthesis in preleptotene spermatocytes. By contrast, a second phase of histone synthesis occurs during midprophase of meiosis, independent of semiconservative DNA synthesis. The [14C] arginine incorporated into the basic nuclear proteins of pachytene spermatocytes is conserved during spermiogenesis and then subsequently discarded within the residual bodies, which are formed during late spermiogenesis. Fluorographic analyses of isotopically labeled basic nuclear proteins in pachytene spermatocytes has shown that only the somatic complement of histones are synthesized during the preleptotene period, whereas the second phase involves the synthesis of proteins H1t, H2S, and "A". In addition, several nonhistone basic nuclear proteins are synthesized concomitant with the germ cell-specific histones. Thus, the data clearly demonstrate that pachytene spermatocytes actively synthesize a number of novel chromatin-associated polypeptides.  相似文献   

9.
We have investigated the requirements for NDJ1 in meiotic telomere redistribution and clustering in synchronized cultures of Saccharomyces cerevisiae. On induction of wild-type meiosis, telomeres disperse from premeiotic aggregates over the nuclear periphery, and then cluster near the spindle pole body (bouquet arrangement) before dispersing again. In ndj1Delta meiocytes, telomeres are scattered throughout the nucleus and fail to form perinuclear meiosis-specific distribution patterns, suggesting that Ndj1p may function to tether meiotic telomeres to the nuclear periphery. Since ndj1Delta meiocytes fail to cluster their telomeres at any prophase stage, Ndj1p is the first protein shown to be required for bouquet formation in a synaptic organism. Analysis of homologue pairing by two-color fluorescence in situ hybridization with cosmid probes to regions on III, IX, and XI revealed that disruption of bouquet formation is associated with a significant delay (>2 h) of homologue pairing. An increased and persistent fraction of ndj1Delta meiocytes with Zip1p polycomplexes suggests that chromosome polarization is important for synapsis progression. Thus, our observations support the hypothesis that meiotic telomere clustering contributes to efficient homologue alignment and synaptic pairing. Under naturally occurring conditions, bouquet formation may allow for rapid sporulation and confer a selective advantage.  相似文献   

10.
Although many studies have been made in an attempt to understand the mechanisms of chromosome pairing and genetic recombination, data on mammalian oogenesis and spermatogenesis are sparse. In the experiments reported here, spermatogenesis of the hibernating male golden hamster was used to test the effect of hibernation in the cold on some essential aspects of meiosis in this species. It was demonstrated that this physiologic state can result in increased duration of preleptotene synthesis of deoxyribonucleic acid (DNA), abnormalities in bivalent pairing, reduced crossing-over, and increased chromosomal nondisjunction. These data provide evidence of the usefulness of this model for further studies of these genetic phenomena in a male mammal.  相似文献   

11.
Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.  相似文献   

12.
Interactions between homologous chromosomes (pairing, recombination) are of central importance for meiosis. We studied entire chromosomes and defined chromosomal subregions in synchronous meiotic cultures of Schizosaccharomyces pombe by fluorescence in situ hybridization. Probes of different complexity were applied to spread nuclei, to delineate whole chromosomes, to visualize repeated sequences of centromeres, telomeres, and ribosomal DNA, and to study unique sequences of different chromosomal regions. In diploid nuclei, homologous chromosomes share a joint territory even before entry into meiosis. The centromeres of all chromosomes are clustered in vegetative and meiotic prophase cells, whereas the telomeres cluster near the nucleolus early in meiosis and maintain this configuration throughout meiotic prophase. Telomeres and centromeres appear to play crucial roles for chromosome organization and pairing, both in vegetative cells and during meiosis. Homologous pairing of unique sequences shows regional differences and is most frequent near centromeres and telomeres. Multiple homologous interactions are formed independently of each other. Pairing increases during meiosis, but not all chromosomal regions become closely paired in every meiosis. There is no detectable axial compaction of chromosomes in meiotic prophase. S. pombe does not form mature synaptonemal complexes, but axial element-like structures (linear elements), which were analyzed in parallel. Their appearance coincides with pairing of interstitial chromosomal regions. Axial elements may define minimal structures required for efficient pairing and recombination of meiotic chromosomes.  相似文献   

13.
Chromatin may be attached to the nuclear envelope through interaction of the nuclear membrane lamins A, B, and C. Such a hypothesis requires that these proteins are present in all cells with chromatin attachment to the nuclear envelope. We have investigated the distribution of the lamins during spermatogenesis in mouse, which exhibits extremes in nuclear envelope structural changes. By immunohistochemical techniques using human auto-antibodies and monoclonal antibodies against these molecules, we found that the lamins persist through all stages of spermatogenesis, though in highly variable amounts. They are also present during meiotic prophase (pachytene) when chromosomes are only locally attached to the nuclear envelope, analogous to the early prophase of somatic cells. Restructuring of the early spermatid nuclear envelope is accompanied by the appearance of a new lamin at the acrosomal fossa. In the epididymal spermatozoon the distribution of different lamins varies markedly over the nucleus suggesting special structural functions. The presence of lamins throughout spermatogenesis supports the concept that they are a general feature of the nuclear envelope structure, even where a lamina is not recognizable ultrastructurally.  相似文献   

14.
植物减数分裂中的染色体配对、联会和重组研究进展   总被引:1,自引:1,他引:1  
Liu CX  He QY  Jin WW 《遗传》2010,32(12):1223-1231
减数分裂是有性生殖的关键步骤,而染色体配对、联会和重组又是减数分裂的重要环节,也是减数分裂研究的热点之一。近些年来,借助于先进的分子生物学和细胞学技术,通过大量突变体的筛选,在植物减数分裂中染色体的配对、联会和重组研究取得了长足的进展。文章就目前克隆的植物减数分裂中染色体配对、联会和重组相关的基因及功能研究进行了总结,并进一步对其分子机制进行了探讨。  相似文献   

15.
16.
17.
We investigated the behaviour of centromeres and distal telomeres during the initial phases of female meiosis in mice. In particular, we wished to determine whether clustering of centromeres and telomeres (bouquet formation) played the same crucial role in homologous chromosome pairing in female meiosis as it does in the male. We found that synapsis (intimate homologous chromosome pairing) is most frequently initiated in the interstitial regions of homologous chromosomes, apparently ahead of the distal regions. The proximal ends of the chromosomes appear to be disfavoured for synaptic initiation. Moreover, initiation of synapsis occurred in oocytes that showed little or no evidence of bouquet formation. A bouquet was present in a substantial proportion of cells at mid to late zygotene, and was still present in some pachytene oocytes. This pattern of bouquet formation and pairing initiation is in stark contrast to that previously described in the male mouse. We propose that although dynamic movements of centromeres and telomeres to form clusters may facilitate alignment of homologues or homologous chromosome segments during zygotene, in the female mouse positional control of synaptic initiation is dependent on some other mechanism.  相似文献   

18.
Affinity-purified monospecific antibodies and indirect immunogold and immunoferritin labeling on ultra-thin sections of low-temperature Lowicryl K4M-embedded samples were used to study the redistribution of calmodulin in ram spermatids and epididymal spermatozoa at the electron microscopic level. Calmodulin appeared as an integral component of well-defined structures or organelles of these cells. In young spermatids, calmodulin was localized in the nucleus, cytoplasm, and developing acrosome. During spermatogenesis and epididymal maturation, calmodulin left the acrosome to reach the perinuclear substance and finally became concentrated in the post-acrosomal area of the head, although some calmodulin remained associated with the tip of the acrosome. Such a redistribution is consistent with the preferential location of Ca2+ in the post-acrosomal cytoplasm of ejaculated spermatozoa. Calmodulin was also observed in the flagellum associated with the plasma membrane and with the motility apparatus, between coarse fibers and axonemal microtubules. These changes in calmodulin distribution may account for the Ca2+-dependent regulation of spermatogenesis and sperm maturation. Calmodulin therefore appears to be a pleiotropic regulator of male gamete development and functions.  相似文献   

19.
Centromeres at premeiotic interphase are clustered and situated in a small area of the nucleus opposite to the nuclear envelope associated heterochromatic masses. The centromeres may occur singly or they may associate to form a structure composed of 2 or more centromeres. Many centromere associations are nonhomologous. Interphase centromeres are not attached to the nuclear envelope. — At zygotene and pachytene centromeres are no longer clustered at one pole of the nucleus but rather are distributed throughout the nucleus. Premeiotic associations appear to be resolved prior to meiotic pairing. Only homologous centromere associations occur during zygotene and pachytene. There is no indication that premeiotic centromere associations are involved in prezygotene alignment of homologous chromosomes.  相似文献   

20.
Homologous chromosome pairing and synapsis are prerequisite for accurate chromosome segregation during meiosis. Here, we show that a family of four related C2H2 zinc-finger proteins plays a central role in these events in C. elegans. These proteins are encoded within a tandem gene cluster. In addition to the X-specific HIM-8 protein, three additional paralogs collectively mediate the behavior of the five autosomes. Each chromosome relies on a specific member of the family to pair and synapse with its homolog. These "ZIM" proteins concentrate at special regions called meiotic pairing centers on the corresponding chromosomes. These sites are dispersed along the nuclear envelope during early meiotic prophase, suggesting a role analogous to the telomere-mediated meiotic bouquet in other organisms. To gain insight into the evolution of these components, we characterized homologs in C. briggsae and C. remanei, which revealed changes in copy number of this gene family within the nematode lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号