首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The reduction of glutathione by plant tissues   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

3.
Selective reduction of seminal ribonuclease by glutathione   总被引:1,自引:0,他引:1  
Incubation of seminal ribonuclease with glutathione leads to the formation of a monomeric species which exhibits twice the specific activity of the native dimer. The monomer was found to possess two mixed disulfides of glutathione at residues 31 and 32, the residues ordinarily involved in the intermolecular disulfide bonds linking the subunits of the native dimer. Formation of the monomer results in only minor changes in the far ultraviolet circular dichroism spectra. The rate of the glutathione-facilitated dissociation reaction is fairly slow, requiring 60 min for completion. Attempts to dimerize the monomer all failed, implying that the dissociation reaction is irreversible. The glutathione reduced monomer was compared with the monomer formed during the regeneration of reduced, denatured bovine seminal ribonuclease in the presence of glutathione. By all criteria examined, the two monomeric forms are identical. It is concluded that the mixed disulfide monomer is the favored form of the enzyme in the presence of glutathione.  相似文献   

4.
To reveal clues to the function of human plasma glutathione peroxidase (GPx), we investigated its catalytic effectiveness with a variety of hydroperoxides. Comparisons of hydroperoxides as substrates for plasma GPx based on the ratio ofV max /K m were blocked by the limited solubility of the organic hydroperoxides, which prevented kinetic saturation of the enzyme at the chosen glutathione concentration. Therefore, we compared the hydroperoxides by the fold increase in the apparent first-order rate constants of their reactions with glutathione owing to catalysis by plasma GPx. The reductions of aromatic and small hydrophobic hydroperoxides (cumene hydroperoxide,t-amyl hydroperoxide,t-butyl hydroperoxide, paramenthane hydroperoxide) were better catalyzed by plasma GPx than were reductions of the more “physiological” substrates (linoleic acid hydroperoxide, hydrogen peroxide, peroxidized plasma lipids, and oxidized cholesterol).  相似文献   

5.
6.
One-electron reduction of chromate by NADPH-dependent glutathione reductase   总被引:2,自引:0,他引:2  
Electron spin resonance (ESR) measurements provide evidence for the formation of Cr(V) intermediates in the enzymatic reduction of Cr(VI) by glutathione reductase (GSSG-R) in the presence of NADPH, indicating an initial single-electron transfer step in the reduction mechanism. Depending on the pH, at least two different Cr(V) species are generated which are relatively long-lived. In addition, we have detected the hydroxyl (.OH) radical formation during the GSSG-R catalyzed reduction of Cr(VI) by spin trapping, employing 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) as spin traps. Superoxide dismutase (SOD) causes only a minor effect on the .OH radical and Cr(V) formation, indicating that the O2- is not significantly involved in the reaction mechanism. Catalase enhances the Cr(V) formation and substantially inhibits the .OH radical formation, indicating the involvement of hydrogen peroxide (H2O2) in the reaction mechanism. Addition of H2O2 suppresses Cr(V) and enhances the .OH radical formation. Measurements involving N-ethylmaleimide show that the Cr(V) species, produced enzymatically by the reduction of Cr(VI) by GSSG-R, react with H2O2 to generate .OH radicals, which might participate in the initiation of Cr(VI) carcinogenicity.  相似文献   

7.
Diamide is reduced by mitochondria utilizing endogenous substrates with Vmax. 20nmol/min per mg of protein and Km 75micrometer. The reaction is inhibited by: (a) thiol-blocking reagents (N-ethylmaleimide, p-hydroxymercuribenzoate, mersalyl and 2,6-dichlorophenol-indophenol);(b) respiratory inhibitors (arsenicals, malonate and antimycin, but not cyanide or oligomycin; inhibition by antimycin is reversed by ATP); (c) uncouplers (carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 2,4-dinitrophenol and valinomycin with K+; inhibition by the first of these uncouplers is not reversed by cyanide); (d) reagents affecting energy conservation (Ca2+, increasing pH, phosphate; phosphate inhibition is augmented by catalytic ADP or ATP and augmentation is abolished by respiratory inhibitors). Concentrations of mitochondrial glutathione are high when diamide reduction is uninhibited, but low after adding one of the above inhibitors such that the reduction rate is roughly proportional to the glutathione concentration. Endogenous ATP concentrations are lower in the presence of diamide than without, but the difference is abolished by respiratory inhibitors. With oligomycin added, however, ATP concentrations are higher in the presence of diamide and this positive increment is decreased by antimycin, N-ethylmaleimide and malonate. In the presence of diamide and an uncoupler, the mitochondrial glutathione content does not fall if various reducible substrates are present, although the inhibition of diamide reduction is not relieved. Some of these substrates prevent the fall in reduced glutathione concentration found with diamide and phosphate. They also relieve the inhibition of diamide reduction and the relief is sensitive to butylmalonate. The inhibition of diamide reduction by N-ethylmaleimide, mersalyl or p-hydroxymercuribenzoate is not relieved by reducible substrates, but the latter mitigate the fall in the concentration of glutathione. Inhibitors of carriers of tricarboxylic acid-cycle intermediates also inhibit reduction of diamide. The reduced glutathione concentration remains high when they are added singly, but falls when two of them are combined. It is proposed that diamide may enter the matrix as a protonated adduct formed with the thiol groups of mitochondrial carriers and then be reduced in the matrix by glutathione, which is regenerated via NADH, energy-dependent transhydrogenase and NADP+-specific glutathione reductase. Some of the high-energy equivalents required for the transhydrogeneration may be generated by the substrate phosphorylation step of the tricarboxylic acid cycle.  相似文献   

8.
Modification of tyrosine (TyrOH) is used as a marker of oxidative and nitrosative stress. 3,3′-Dityrosine formation, in particular, reflects oxidative damage and results from the combination of two tyrosyl phenoxyl radicals (TyrO). This reaction is in competition with reductive processes in the cell which ‘repair’ tyrosyl radicals: possible reductants include thiols and ascorbate. In this study, a rate constant of 2 × 106 M−1 s−1 was estimated for the reaction between tyrosyl radicals and glutathione (GSH) at pH 7.15, generating the radicals by pulse radiolysis and monitoring the tyrosyl radical by kinetic spectrophotometry. Earlier measurements have suggested that this ‘repair’ reaction could be an equilibrium, and to investigate this possibility the reduction (electrode) potential of the (TyrO,H+/TyrOH) couple was reinvestigated by observing the fast redox equilibrium with the indicator 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonate). Extrapolation of the reduction potential of TyrO measured at pH 9–11 indicated the mid-point reduction potential of the tyrosyl radical at pH 7, Em7(TyrO,H+/TyrOH) = 0.93 ± 0.02 V. This is close to the reported reduction potential of the glutathione thiyl radical, Em7 = 0.94 ± 0.03 V, confirming the ‘repair’ equilibrium constant is of the order of unity and suggesting that efficient reduction of TyrO by GSH might require removal of thiyl radicals to move the equilibrium in the direction of repair. Loss of thiyl radicals, facilitating repair of TyrO, can arise either via conjugation of thiyl with thiol/thiolate or oxygen, or unimolecular transformation, the latter important at low concentrations of thiols and oxygen.  相似文献   

9.
Erythropoietin (Epo) is crucial for promoting the survival, proliferation, and differentiation of mammalian erythroid progenitors. The central role played by tyrosine phosphorylation of erythropoietin receptor (EpoR) in Epo-cell activation has focused attention on protein tyrosine phosphatases (PTPs) as candidates implicated in the pathogenesis of the resistance to therapy with human recombinant Epo. Prototypic member of the PTP family is PTP1B, which has been implicated in the regulation of EpoR signaling pathways. In previous reports we have shown that PTP1B is reciprocally modulated by Epo in undifferentiated UT-7 cell line. However, no information is available with respect to the modulation of this phosphatase in non-Epo depending cells or at late stages of erythroid differentiation. In order to investigate these issues we induced UT-7 cells to differentiate and studied their PTP1B expression pattern. Simultaneous observations were performed in TF-1 cells which can be cultured either with GM-CSF, IL-3 or Epo. We found that Epo induced PTP1B cleaveage in TF-1 and differentiated UT-7 cells. This pattern of PTP1B modulation may be due to an increased TRPC3/TRPC6 expression ratio which could explain the larger and sustained calcium response to Epo and calpain activation in Epo treated TF-1 and differentiated UT-7 cells.  相似文献   

10.
Selenite, selenate and selenocystine catalyzed the reduction of methemoglobin (metHb) by glutathione (GSH), while selenomethionine did not. Maximal reduction of metHb was observed with 10?5 M selenite and 2 mM GSH, at pH 7.4. Selenite also catalyzed the reduction of metHb with cysteine or 2-mercaptoethylamine in place of GSH. Heavy metals and arsenite completely prevented the effect of selenite. These findings suggest that certain seleno-compounds catalyze the reduction of metHb by thiol compounds.  相似文献   

11.
One- and two-electron reduction of quinones by glutathione reductase   总被引:1,自引:0,他引:1  
Yeast glutathione reductase (E.C. 1.6.4.2) catalyzes the oxidation of NADPH by p-quinones and ferricyanide with a maximal turnover number (TNmax) of 4-5 s-1.NADP+ stimulates the reaction and the TNmax/Km value of acceptors is reached at NADP+/NADPH greater than or equal to 100. TNmax is increased up to 30-33 s-1. The stimulatory effect of NADP+ may be associated with its complexation with the NADPH-binding site in the reduced enzyme (Kd = 40-60 microM). It is suggested that NADP+ shifts the electron density towards FAD in the two-electron-reduced enzyme and, evidently, changes its one-electron-reduction potentials, while quinones oxidize an equilibrium form of glutathione reductase containing reduced FAD. In the absence of NADP+ the reduction of quinones by glutathione reductase proceeds mainly in a two-electron manner. At NADP+/NADPH = 100 a one-electron reduction makes up 44% of the total process. At pH 6.0-7.0 the reduced forms of naphthoquinones undergo cyclic redox conversions. A hyperbolic dependence exists of the log TN/Km of quinones on their one-electron-reduction potentials.  相似文献   

12.
Glutaredoxins (Grx) are small (approximately 12kDa) proteins which catalyze thiol disulfide oxidoreductions involving glutathione (GSH) and disulfides in proteins or small molecules. Here, we present data which demonstrate the ability of glutaredoxins to catalyze the reduction of oxidized glutathione (GSSG) by dihydrolipoamide (DHL), an important biological redox catalyst and synthetic antioxidant. We have designed a new assay method to quantify the rate of reduction of GSSG and other disulfides by reduced lipoamide and have tested a set of eight recombinant Grx from human, rat, yeast, and E. coli. Lipoamide dependent activity is highest with the large atypical E. coli Grx2 (k(cat)=3.235 min(-1)) and lowest for human mitochondrial Grx2a (k(cat)=96 min(-1)) covering a wider range than k(cat) for the standard reduction of hydroxyethyldisulfide (HED) by GSH (290-2.851 min(-1)). The lipoamide/HED activity ratio was highest for yeast Grx2 (1.25) and E. coli Grx2 and lowest for E. coli Grx1 (0.13). These results suggest a new role for Grxs as ancillary proteins that could shunt reducing equivalents from main catabolic pathways to recycling of GSSG via a lipoyl group, thus serving biochemical functions which involve GSH but without NAD(P)H consumption.  相似文献   

13.
14.
15.
16.
Selenium as a catalyst for the reduction of cytochrome c by glutathione   总被引:3,自引:0,他引:3  
  相似文献   

17.
Arabidopsis thaliana contains eight glutathione peroxidase (GPX) homologs (AtGPX1-8). Four mature GPX isoenzymes with different subcellular distributions, AtGPX1, -2, -5 and -6, were overexpressed in Escherichia coli and characterized. Interestingly, these recombinant proteins were able to reduce H2O2, cumene hydroperoxide, phosphatidylcholine and linoleic acid hydroperoxides using thioredoxin but not glutathione or NADPH as an electron donor. The reduction activities of the recombinant proteins with H2O2 were 2-7 times higher than those with cumene hydroperoxide. Km values for thioredoxin and H2O2 were 2.2-4.0 and 14.0-25.4 microM, respectively. These finding suggest that GPX isoenzymes may function to detoxify H2O2 and organic hydroperoxides using thioredoxin in vivo and may also be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP balance.  相似文献   

18.
19.
20.
Resistance to arsenate conferred on Escherichia coli by the ars operon of plasmid R773 requires both the product of the arsC gene and reduction of arsenate to arsenate. A genetic analysis was performed to identify the source of reducing potential in vivo. in addition to the ars genes, arsenate resistance required the products of the gor gene for glutathione reductase and the gshA and gshB genes for glutathione synthesis. Mutations in the trx and grx genes for thioredoxin and glutaredoxin, respectively, had no effect on arsenate resistance. Although resistance required the arsC gene, the rate of reduction of arsenate to arsenate was nearly the same in cells lacking the ars operon. In strains deficient in glutathione biosynthesis this endogenous reduction was greatly diminished, and cells exhibited increased sensitivity to arsenate. When glutathione was supplied exogenously to such mutants, resistance was restored only to cells expressing the ars operon, and only such cells had detectable arsenate reduction after addition of glutathione. Since ArsC-catalysed reduction of arsenate provides high level resistance, physical coupling of the ArsC reaction to efflux of the resulting arsenite is hypothesised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号