首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The physiological state of CHO cells in perfusion culture was quantified by determining fluxes through the bioreaction network using 13C glucose and 2D-NMR spectroscopy. CHO cells were cultivated in a 2.5 L perfusion bioreactor with glucose and glutamine as the primary carbon and energy sources. The reactor was inoculated at a cell density of 8×106 cells/mL and operated at ~10×106 cells/mL using unlabeled glucose for the first 13 days. The second phase lasted 12 days and the medium consisted of 10% [U-13C]glucose, 40% labeled [1-13C]glucose with the balance unlabeled. After the culture attained isotopic steady state, biomass samples from the last 3 days of cultivation were considered representative and used for flux estimation. They were hydrolyzed and analyzed by 2D [13C, 1H] COSY measurements using the heteronuclear single quantum correlation sequence with gradients for artifacts suppression. Metabolic fluxes were determined using the 13C-Flux software package by minimizing the residuals between the experimental and the simulated NMR data. Normalized residuals exhibited a Gaussian distribution indicating good model fit to experimental data. The glucose consumption rate was 5-fold higher than that of glutamine with 41% of glucose channeled through the pentose phosphate pathway. The fluxes at the pyruvate branch point were almost equally distributed between lactate and the TCA cycle (55% and 45%, respectively). The anaplerotic conversion of pyruvate to oxaloacetate by pyruvate carboxylase accounted for 10% of the pyruvate flux with the remaining 90% entering the TCA cycle through acetyl-CoA. The conversion of malate to pyruvate catalyzed by the malic enzyme was 70% higher than that for the anaplerotic reaction catalyzed by pyruvate carboxylase. Most amino acid catabolic and biosynthetic fluxes were significantly lower than the glycolytic and TCA cycle fluxes. Metabolic flux data from NMR analysis validated a simplified model where metabolite balancing was used for flux estimation. In this reduced flux space, estimates from these two methods were in good agreement. This simplified model can routinely be used in bioprocess development experiments to estimate metabolic fluxes with much reduced analytical investment. The high resolution flux information from 2D-NMR spectroscopy coupled with the capability to validate a simplified metabolite balancing based model for routine use make 13C-isotopomer analysis an attractive bioprocess development tool for mammalian cell cultures.  相似文献   

2.
The metabolic effects of extracellular glutamine (2.5 mM) or high potassium (25 mM) on glucose metabolism were studied in cultured cerebellar astrocytes. High potassium caused an increased glycolytic flux and an increase in glutamine release. Exposure to glutamine increased glycolytic flux and alanine formation, indicating that glutamine uptake is an energy requiring process. The effects of glutamine and high potassium on glycolytic flux were additive. Formation of metabolites from [1-13C]glucose and [2-13C]acetate confirmed the effects of glutamine and high potassium on glycolytic metabolism. In the presence of extracellular glutamine, analysis of the 13C labeling patterns of citrate and glutamine indicated a decrease in the cycling ratio and/or pyruvate carboxylation and glutamine synthesis from [1-13C]glucose did occur, but was decreased. Exposure to high potassium led to extracellular accumulation of acetate, presumably through non-enzymatic decarboxylation of pyruvate.  相似文献   

3.
[1-(13) C]glucose metabolism in the rat brain was investigated after intravenous infusion of the labelled substrate. Incorporation of the label into metabolites was analysed by NMR spectroscopy as a function of the infusion time: 10, 20, 30 or 60 min. Specific enrichments in purified mono- and dicarboxylic amino acids were determined from (1) H-observed/(13) C-edited and (13) C-NMR spectroscopy. The relative contribution of pyruvate carboxylase versus pyruvate dehydrogenase (PC/PDH) to amino acid labelling was evaluated from the enrichment difference between either C2 and C3 for Glu and Gln, or C4 and C3 for GABA, respectively. No contribution of pyruvate carboxylase to aspartate, glutamate or GABA labelling was evidenced. The pyruvate carboxylase contribution to glutamine labelling varied with time. PC/PDH decreased from around 80% after 10 min to less than 30% between 20 and 60 min. This was interpreted as reflecting different labelling kinetics of the two glutamine precursor glutamate pools: the astrocytic glutamate and the neuronal glutamate taken up by astrocytes through the glutamate-glutamine cycle. The results are discussed in the light of the possible occurrence of neuronal pyruvate carboxylation. The methods previously used to determine PC/PDH in brain were re-evaluated as regards their capacity to discriminate between astrocytic (via pyruvate carboxylase) and neuronal (via malic enzyme) pyruvate carboxylation.  相似文献   

4.
Primary metabolism of a murine hybridoma was probed with (13)C nuclear magnetic resonance (NMR) spectroscopy. Cells cultured in a hollow fiber bioreactor were serially infused with [1-(13)C] glucose, [2-(13)C] glucose, and [3-(13)C] glutamine. In vivo spectroscopy of the culture was used in conjunction with off-line spectroscopy of the medium to determine the intracellular concentration of several metabolic intermediates and to determine fluxes for primary metabolic pathways. Intracellular concentrations of pyruvate and alanine were very high relative to levels observed in normal quiescent mammalian cells. Estimates made from labeling patterns in lactate indicate that 76% of pyruvate is derived directly from glycolysis; some is also derived from the malate shunt, the pyruvate/melate shuttle associated with lipid synthesis and the pentose phosphate pathway. The rate of formation of pyruvate from the pentose phosphate pathway was estimated to be 4% of that from glycolysis; This value is a lower limit and the actual value may be higher. Incorporation of pyruvate into the tricarboxylic acid (TCA) cycle appears to occur through only pyruvate dehydrogenase; no pyruvate carboxylase activity was detected. The malate shunt rate was approximately equal to the rate of glutamine uptake. The rate of incorporation of glucosederived acetyl-CoA into lipids was 4% of the glucose uptake rate. The TCA cycle rate between isocitrate and alpha-ketoglutarate was 110% of the glutamine uptake rate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Metabolic profiling is defined as the simultaneous assessment of substrate fluxes within and among the different pathways of metabolite synthesis and energy production under various physiological conditions. The use of stable-isotope tracers and the analysis of the distribution of labeled carbons in various intermediates, by both mass spectrometry and NMR spectroscopy, allow the role of several metabolic processes in cell growth and death to be defined. In the present paper we describe the metabolic profiling of Jurkat cells by isotopomer analysis using (13)C-NMR spectroscopy and [1,2-(13)C(2)]glucose as the stable-isotope tracer. The isotopomer analysis of the lactate, alanine, glutamate, proline, serine, glycine, malate and ribose-5-phosphate moiety of nucleotides has allowed original integrated information regarding the pentose phosphate pathway, TCA cycle, and amino acid metabolism in proliferating human leukemia T cells to be obtained. In particular, the contribution of the glucose-6-phosphate dehydrogenase and transketolase activities to phosphoribosyl-pyrophosphate synthesis was evaluated directly by the determination of isotopomers of the [1'-(13)C], [4',5'-(13)C(2)]ribosyl moiety of nucleotides. Furthermore, the relative contribution of the glycolysis and pentose cycle to lactate production was estimated via analysis of lactate isotopomers. Interestingly, pyruvate carboxylase and pyruvate dehydrogenase flux ratios measured by glutamate isotopomers and the production of isotopomers of several metabolites showed that the metabolic processes described could not take place simultaneously in the same macrocompartments (cells). Results revealed a heterogeneous metabolism in an asynchronous cell population that may be interpreted on the basis of different metabolic phenotypes of subpopulations in relation to different cell cycle phases.  相似文献   

6.
Metabolic engineering has been defined as a directed improvement of product formation or cellular properties by modification of specific biochemical pathways or introduction of new enzymatic reactions by recombinant DNA technology. The use of metabolic flux analysis (MFA) has helped in the understanding of the key limitation in the metabolic pathways of cultured animal cells. The MFA of the major nutrients glucose and glutamine showed that the flux of glucose to the TCA cycle and its subsequent utilization is limited as a result of the lack of certain key enzymes in the pathway. One of the key enzymes controlling this flux is pyruvate carboxylase. Introduction of this enzyme into mammalian cells has been shown to improve the utilization of glucose and limit the production of lactate and ammonia, which are deleterious to cell growth. In the present work a yeast pyruvate carboxylase gene has been introduced into mammalian (HEK 293) and insect (Trichoplusia ni High-Five) cells, resulting in the cytosolic expression of the enzyme. In both cases the resulting transfected cells were able to utilize glucose and glutamine more efficiently and produce lower amounts of lactate and ammonia. Differences in the amino acid utilization pattern were also observed, indicating changes in the basic metabolism of the cells. The performance of the transfected cells as expression systems for adenovirus and baculovirus vectors, respectively, has also been examined. The results obtained and their impact on the process development for protein and viral vector production are discussed.  相似文献   

7.
Perchloric acid extracts of rabbit renal proximal convoluted tubular cells (PCT) incubated with [2-13C]glycerol and [1,3-13C]glycerol were investigated by 13C-NMR spectroscopy. These 13C-NMR spectra enabled us to determine cell metabolic pathways of glycerol in PCT cells. The main percentage of 13C-label, arising from 13C-enriched glycerol, was found in glucose, lactate, glutamine and glutamate. So far it can be concluded that glycerol is a suitable substrate for PCT cells and is involved in gluconeogenesis and glycolysis as well in the Krebs cycle intermediates. Label exchange and label enrichment in 13C-labelled glucose, arising from [2-13C]glycerol and [1,3-13C]glycerol, is explained by label scrambling through the pentose shunt and a label exchange in the triose phosphate pool. From relative enrichments it is estimated that the ratio of the pyruvate kinase flux to the gluconeogenetic flux is 0.97:1 and that the ratio of pyruvate carboxylase activity relative to pyruvate dehydrogenase activity is 2.0:1. Our results show that 13C-NMR spectroscopy, using 13C-labelled substrates, is a powerful tool for the examination of renal metabolism.  相似文献   

8.
Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorporation into amino acid neurotransmitters such as glutamate (Glu), GABA and aspartate can be measured providing information on Krebs cycle flux and oxidative metabolism. Given the compartmentation of key enzymes such as pyruvate carboxylase and glutamine synthetase, the detection of label incorporation into glutamine indicated that neuronal and glial metabolism can be measured in vivo. The purpose of this paper is to provide a critical overview of these recent advances into measuring compartmentation of brain energy metabolism using localized in vivo 13C NMR spectroscopy. The studies reviewed herein showed that anaplerosis is significant in brain, as is oxidative ATP generation in glia and the rate of glial glutamine synthesis attributed to the replenishment of the neuronal Glu pool and that brain glycogen metabolism is slow under resting conditions. This new modality promises to provide a new investigative tool to study aspects of normal and diseased brain hitherto unaccessible, such as the interplay between glutamatergic action, glucose and glycogen metabolism during brain activation, and the derangements thereof in patients with hepatic encephalopathy, neurodegenerative diseases and diabetes.  相似文献   

9.
The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13C labeling experiments with [U-13C6]glucose in glucose- or ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a comprehensive isotopomer model. The general response to disruption of both pyruvate kinase isoenzymes in E. coli was a local flux rerouting via the combined reactions of phosphoenolpyruvate (PEP) carboxylase and malic enzyme. Responses in the pentose phosphate pathway and the tricarboxylic acid cycle were strongly dependent on the environmental conditions. In addition, high futile cycling activity via the gluconeogenic PEP carboxykinase was identified at a low dilution rate in glucose-limited chemostat culture of pyruvate kinase-deficient E. coli, with a turnover that is comparable to the specific glucose uptake rate. Furthermore, flux analysis in mutant cultures indicates that glucose uptake in E. coli is not catalyzed exclusively by the phosphotransferase system in glucose-limited cultures at a low dilution rate. Reliability of the flux estimates thus obtained was verified by statistical error analysis and by comparison to intracellular carbon flux ratios that were independently calculated from the same NMR data by metabolic flux ratio analysis.  相似文献   

10.
A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism.  相似文献   

11.
Mitochondrial metabolism in developing embryos of Brassica napus   总被引:1,自引:0,他引:1  
The metabolism of developing plant seeds is directed toward transforming primary assimilatory products (sugars and amino acids) into seed storage compounds. To understand the role of mitochondria in this metabolism, metabolic fluxes were determined in developing embryos of Brassica napus. After labeling with [1,2-(13)C2]glucose + [U-(13)C6]glucose, [U-(13)C3]alanine, [U-(13)C5]glutamine, [(15)N]alanine, (amino)-[(15)N]glutamine, or (amide)-[(15)N]glutamine, the resulting labeling patterns in protein amino acids and in fatty acids were analyzed by gas chromatography-mass spectrometry. Fluxes through mitochondrial metabolism were quantified using a steady state flux model. Labeling information from experiments using different labeled substrates was essential for model validation and reliable flux estimation. The resulting flux map shows that mitochondrial metabolism in these developing seeds is very different from that in either heterotrophic or autotrophic plant tissues or in most other organisms: (i) flux around the tricarboxylic acid cycle is absent and the small fluxes through oxidative reactions in the mitochondrion can generate (via oxidative phosphorylation) at most 22% of the ATP needed for biosynthesis; (ii) isocitrate dehydrogenase is reversible in vivo; (iii) about 40% of mitochondrial pyruvate is produced by malic enzyme rather than being imported from the cytosol; (iv) mitochondrial flux is largely devoted to providing precursors for cytosolic fatty acid elongation; and (v) the uptake of amino acids rather than anaplerosis via PEP carboxylase determines carbon flow into storage proteins.  相似文献   

12.
Carbon flux through tricarboxylic acid cycle in rat renal tubules   总被引:1,自引:0,他引:1  
Our aim was to delineate the effect(s) of chronic metabolic acidosis on renal TCA-cycle metabolism. Renal tubules isolated from control and chronically acidotic rats were incubated at pH 7.4 with either 2 mM [2,3-13C]pyruvate or [2-13C]acetate. GC-MS and/or 13C-NMR were utilized to monitor the flux of 13C through pyruvate dehydrogenase, pyruvate carboxylase and the TCA-cycle. With either, precursor acidosis was associated with significantly decreased formation of 13C-labelled citrate, malate, aspartate and alanine and increased formation of glucose, lactate and acetyl-CoA as compared with the control. The results indicate that adaptation of renal metabolism to chronic metabolic acidosis is associated with diminished flux through citrate synthetase and concomitantly increased flux through pyruvate carboxylase. The data suggest that depletion of TCA-cycle intermediates and enhanced ammoniagenesis in the kidney of chronically acidotic rats may be regulated at the site of mitochondrial citrate-condensing enzyme.  相似文献   

13.
Mammalian cells consume and metabolize various substrates from their surroundings for energy generation and biomass synthesis. Glucose and glutamine, in particular, are the primary carbon sources for proliferating cancer cells. While this combination of substrates generates static labeling patterns for use in (13)C metabolic flux analysis (MFA), the inability of single tracers to effectively label all pathways poses an obstacle for comprehensive flux determination within a given experiment. To address this issue we applied a genetic algorithm to optimize mixtures of (13)C-labeled glucose and glutamine for use in MFA. We identified tracer combinations that minimized confidence intervals in an experimentally determined flux network describing central carbon metabolism in tumor cells. Additional simulations were used to determine the robustness of the [1,2-(13)C(2)]glucose/[U-(13)C(5)]glutamine tracer combination with respect to perturbations in the network. Finally, we experimentally validated the improved performance of this tracer set relative to glucose tracers alone in a cancer cell line. This versatile method allows researchers to determine the optimal tracer combination to use for a specific metabolic network, and our findings applied to cancer cells significantly enhance the ability of MFA experiments to precisely quantify fluxes in higher organisms.  相似文献   

14.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   

15.
The aim of the present study was to identify the distinguishing metabolic characteristics of brain tissue salvaged by reperfusion following focal cerebral ischemia. Rats were subjected to 120 min of middle cerebral artery occlusion followed by 120 min of reperfusion. The rats received an intravenous bolus injection of [1-(13)C]glucose plus [1,2-(13)C]acetate. Subsequently two brain regions considered to represent penumbra and ischemic core, i.e. the frontoparietal cortex and the lateral caudoputamen plus lower parietal cortex, respectively, were analyzed with (13)C NMRS and HPLC. The results demonstrated four metabolic events that distinguished the reperfused penumbra from the ischemic core. (1) Improved astrocytic metabolism demonstrated by increased amounts of [4,5-(13)C]glutamine and improved acetate oxidation. (2) Neuronal mitochondrial activity was better preserved although the flux of glucose via pyruvate dehydrogenase into the tricarboxylic acid (TCA) cycle in glutamatergic and GABAergic neurons was halved. However, NAA content was at control level. (3) Glutamatergic and GABAergic neurons used relatively more astrocytic metabolites derived from the pyruvate carboxylase pathway. (4) Lactate synthesis was not increased despite decreased glucose metabolism in the TCA cycle via pyruvate dehydrogenase. In the ischemic core both neuronal and astrocytic TCA cycle activity declined significantly despite reperfusion. The utilization of astrocytic precursors originating from the pyruvate carboxylase pathway was markedly reduced compared the pyruvate dehydrogenase pathway in glutamate, and completely stopped in GABA. The NAA level fell significantly and lactate accumulated. The results demonstrate that preservation of astrocytic metabolism is essential for neuronal survival and a predictor for recovery.  相似文献   

16.
This study was performed to analyze the metabolic fate of a high concentration (5 mM) of glutamine and glutamate in rat brain slices and the participation of these amino acids in the glutamine-glutamate cycle. For this, brain slices were incubated for 60 min with [3-13C]glutamine or [3-13C]glutamate. Tissue plus medium extracts were analyzed by enzymatic and 13C NMR measurements and fluxes through pathways of glutamine and glutamate metabolism were calculated. We demonstrate that both substrates were utilized and oxidized at high rates by rat brain slices and served as precursors of neurotransmitters, tricarboxylic acid (TCA) cycle intermediates and alanine. In order to determine the participation of glutamine synthetase in the appearance of new glutamine molecules with glutamine as substrate, brain slices were incubated with [3-13C]glutamine in the presence of methionine sulfoximine, a specific inhibitor of glutamine synthetase. Our results indicate that 36.5% of the new glutamine appeared was glutamine synthetase-dependent and 63.5% was formed from endogenous substrates. Flux through glutamic acid decarboxylase was higher with glutamine than with glutamate as substrate whereas fluxes from α-ketoglutarate to glutamate and through glutamine synthetase, malic enzyme, pyruvate dehydrogenase, pyruvate carboxylase and citrate synthase were in the same range with both substrates.  相似文献   

17.
Since glucose is the main cerebral substrate, we have characterized the metabolism of various 13C glucose isotopomers in rat brain slices. For this, we have used our cellular metabolomic approach that combines enzymatic and carbon 13 NMR techniques with mathematical models of metabolic pathways. We identified the fate and the pathways of the conversion of glucose carbons into various products (pyruvate, lactate, alanine, aspartate, glutamate, GABA, glutamine and CO2) and determined absolute fluxes through pathways of glucose metabolism. After 60 min of incubation, lactate and CO2 were the main end-products of the metabolism of glucose which was avidly metabolized by the slices. Lactate was also used at high rates by the slices and mainly converted into CO2. High values of flux through pyruvate carboxylase, which were similar with glucose and lactate as substrate, were observed. The addition of glutamine, but not of acetate, stimulated pyruvate carboxylation, the conversion of glutamate into succinate and fluxes through succinate dehydrogenase, malic enzyme, glutamine synthetase and aspartate aminotransferase. It is concluded that, unlike brain cells in culture, and consistent with high fluxes through PDH and enzymes of the tricarboxylic acid cycle, rat brain slices oxidized both glucose and lactate at high rates.  相似文献   

18.
Recent studies in rodent and human cerebral cortex have shown that glutamate-glutamine neurotransmitter cycling is rapid and the major pathway of neuronal glutamate repletion. The rate of the cycle remains controversial in humans, because glutamine may come either from cycling or from anaplerosis via glial pyruvate carboxylase. Most studies have determined cycling from isotopic labeling of glutamine and glutamate using a [1-(13)C]glucose tracer, which provides label through neuronal and glial pyruvate dehydrogenase or via glial pyruvate carboxylase. To measure the anaplerotic contribution, we measured (13)C incorporation into glutamate and glutamine in the occipital-parietal region of awake humans while infusing [2-(13)C]glucose, which labels the C2 and C3 positions of glutamine and glutamate exclusively via pyruvate carboxylase. Relative to [1-(13)C]glucose, [2-(13)C]glucose provided little label to C2 and C3 glutamine and glutamate. Metabolic modeling of the labeling data indicated that pyruvate carboxylase accounts for 6 +/- 4% of the rate of glutamine synthesis, or 0.02 micromol/g/min. Comparison with estimates of human brain glutamine efflux suggests that the majority of the pyruvate carboxylase flux is used for replacing glutamate lost due to glial oxidation and therefore can be considered to support neurotransmitter trafficking. These results are consistent with observations made with arterial-venous differences and radiotracer methods.  相似文献   

19.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of a murine hybridoma cell line at two feed glutamine concentrations, 4.0 and 1.7 mM. Carbon-13 labeling patterns were used in conjunction with nutrient uptake rates to calculate the metabolic fluxes through the glycolytic pathway, the pentose shunt, the malate shunt, lipid biosynthesis, and the tricarboxylic acid (TCA) cycle. Decreasing the feed glutamine concentration significantly decreased glutamine uptake but had little effect on glucose metabolism. A significant incrase in antibody productivity occurred upon decreasing the feed glutamine level. The increased antibody productivity in concert with decreased glutamine uptake and no apparent change in glucolytic metabolism suggests that antibody production was not energy limited. Metabolic flux calculations indicate that (1) approximately 92% of the glucose consumed proceeds directly through glycolysis with 8% channeled through the pentose shunt; (2) lipid biosynthesis appears to be greater than malate shunt activity; and (3) considerable exchange occurs between TCA cycle intermediates and amino acid metabolic pools, leading to substantial loss of (13)C label from the TCA cycle. These results illustrate that (13)NMR spectroscopy is a powerfulf tool in the calculation of metabolic fluxes, particularly for exchange pathways where no net flux occurs. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
13C-n.m.r. spectroscopy was used to determine the metabolic fate of alanine and aspartate in rat and rabbit kidney proximal tubules. The main purpose of the present study was to investigate the effect of streptozotocin-induced diabetes on the influx of 13C label from [3-13C]alanine into the tricarboxylic acid cycle and through the fructose-1,6-bisphosphatase pathway. This influx was calculated from the relative enrichment of 13C in the various glutamate and glutamine carbon atoms. The relative proportion of 13C label which entered the tricarboxylic acid cycle via pyruvate carboxylase relative to the proportion that entered via pyruvate dehydrogenase was 1.92 +/- 0.02 in fed control rats and 2.27 +/- 0.04 in streptozotocin-treated rats. However, streptozotocin-induced diabetes did not significantly affect this ratio in rabbit proximal convoluted tubular cells. Only in rat proximal convoluted tubular cells did we observe an increase in flux through the fructose-1,6-bisphosphatase pathway by streptozotocin treatment compared with fed controls. The data suggest that streptozotocin-induced diabetes in rats causes the same metabolic changes as does chronic acidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号