首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
1,25 Dihydroxyvitamin D (1,25(OH)(2)D) regulates the differentiation of keratinocytes. 1,25(OH)(2)D raises intracellular free calcium (Cai) as a necessary early step toward stimulating differentiation. 1,25(OH)(2)D induces the calcium sensing receptor (CaR) in keratinocytes and enhances the calcium response of these cells. Activation of the CaR by calcium increases intracellular free calcium by a mechanism involving phospholipase C (PLC) cleavage of phosphatidylinositolbisphosphate into inositoltrisphosphate (IP(3)) and diacylglycerol (DG). 1,25(OH)(2)D induces the family of PLCs. PLC-gamma1 has a DR6 VDRE in its promoter which binds and is activated by VDR/RAR rather than VDR/RXR. The involucrin gene, which encodes a critical component of the cornified envelope, contains a DR3 VDRE in its promoter that acts in conjunction with a nearby AP-1 site. The sequential regulation of these genes is critical for the differentiation process. In undifferentiated keratinocytes, the VDR binds preferentially to the DRIP complex of coactivators. However, with differentiation DRIP 205 is no longer produced, and the VDR switches partners to the SRC family (SRC2 and 3). These studies suggest that at least part of the sequential activation of genes required during keratinocyte differentiation is regulated by the change (availability) of these different coactivator complexes.  相似文献   

2.
Keratinocytes express high levels of 25OHD 1alpha-hydroxylase (1OHase). The product of this enzyme, 1,25(OH)(2)D, promotes the differentiation of keratinocytes in vitro. To test whether 1OHase activity is essential for keratinocyte differentiation in vivo we examined the differentiation process in mice null for the expression of the 1alphaOHase gene (1alphaOHase(-/-)) by light and electron microscopy, by immunocytochemistry for markers of differentiation, by ion capture cytochemistry for calcium localization, and by function using transepidermal water loss (TEWL) to assess barrier integrity. Levels of involucrin, filaggrin, and loricrin-markers of differentiation in the keratinocyte and critical for the formation of the cornified envelope-were reduced in the epidermis of 1alphaOHase(-/-) mice. Calcium in the outer epidermis was reduced with loss of the calcium gradient from stratum basale to stratum granulosum. TEWL was normal in the resting state, but following disruption of the barrier, 1alphaOHase(-/-) mice had a markedly prolonged recovery of barrier function associated with a reduction in lamellar body secretion and a failure to reform the calcium gradient. Thus 1,25(OH)(2)D is essential for normal epidermal differentiation, most likely by inducing the proteins and mediating the calcium signaling in the epidermis required for the generation and maintenance of the barrier.  相似文献   

3.
The skin is the major source of Vitamin D(3) (cholecalciferol), and ultraviolet light (UV) is critical for its formation. Keratinocytes, the major cell in the epidermis, can further convert Vitamin D(3) to its hormonal form, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] (calcitriol). 1,25(OH)(2)D(3) in turn stimulates the differentiation of keratinocytes, raising the hope that 1,25(OH)(2)D(3) may prevent the development of malignancies in these cells. Skin cancers (squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanomas) are the most common cancers afflicting humans. UV exposure is linked to the incidence of these cancers-UV is thus good and bad for epidermal health. Our focus is on the mechanisms by which 1,25(OH)(2)D(3) regulates the differentiation of keratinocytes, and how this regulation breaks down in transformed cells. Skin cancers produce 1,25(OH)(2)D(3), contain ample amounts of the Vitamin D receptor (VDR), and respond to 1,25(OH)(2)D(3) with respect to induction of the 24-hydroxylase, but fail to differentiate in response to 1,25(OH)(2)D(3). Why not? The explanation may lie in the overexpression of the DRIP complex, which by interfering with the normal transition from DRIP to SRC as coactivators of the VDR during differentiation, block the induction of genes required for 1,25(OH)(2)D(3)-induced differentiation.  相似文献   

4.
Cell programs such as proliferation and differentiation involve the selective activation and repression of gene expression. The vitamin D receptor (VDR), through 1,25(OH)(2)D(3), controls the proliferation and differentiation of keratinocytes. Previously, we have identified two VDR binding coactivator complexes. In proliferating keratinocytes VDR bound preferentially to the DRIP complex, whereas in differentiated keratinocytes the SRC complex was preferred. We proposed that different coactivators are required for sequential gene regulation in the transition from proliferation to differentiation. Here we examined the roles of DRIP205 and SRC-3 in this transition. Silencing of DRIP205 and VDR caused hyperproliferation of keratinocytes, demonstrated by increased XTT and BrdU incorporation. SRC-3 silencing, on the other hand, did not have an effect on proliferation. In contrast, SRC-3 as well as DRIP205 and VDR silencing blocked keratinocyte differentiation as shown by decreased expression of keratin 1 and filaggrin. These results are consistent with the differential localization of DRIP205 and SRC-3 in skin. These results indicate that DRIP205 is required for keratinocyte proliferation. Both DRIP205 and SRC-3 are required for the keratinocyte differentiation. These results support the concept that the selective use of coactivators by VDR underlies the selective regulation of gene expression in keratinocyte proliferation and differentiation.  相似文献   

5.
The epidermis is the largest organ in the body. It is comprised primarily of keratinocytes which are arranged in layers that recapitulates their programmed life cycle. Proliferating keratinocytes are on the bottom-the stratum basale. As keratinocytes leave the stratum basale they begin to differentiate, culminating in the enucleated stratum corneum which has the major role of permeability barrier. Calcium and the active metabolite of vitamin D, 1,25(OH)(2)D(3), play important roles in this differentiation process. The epidermis has a gradient of calcium with lowest concentrations in the stratum basale, and highest concentrations in the stratum granulosum where proteins critical for barrier function are produced. Vitamin D is made in different layers of the epidermis, but 1,25(OH)(2)D(3) is made primarily in the stratum basale. Together calcium and 1,25(OH)(2)D(3) regulate the ordered differentiation process by the sequential turning on and off the genes producing the elements required for differentiation as well as activating those enzymes involved in differentiation. Animal models in which the sensing mechanism for calcium, the receptor for 1,25(OH)(2)D(3), or the enzyme producing 1,25(OH)(2)D(3) have been rendered inoperative demonstrate the importance of these mechanisms for the differentiation process, although each animal model has its own phenotype. This review will examine the mechanisms by which calcium and 1,25(OH)(2)D(3) interact to control epidermal differentiation.  相似文献   

6.
7.
8.
9.
10.
20-hydroxyvitamin D(2) [20(OH)D(2)] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D(2) is similar to that of 1,25(OH)(2)D(3) and of newly synthesized 1,20(OH)(2)D(2) but significantly higher than that of 25(OH)D(3). 20(OH)D(2) also displays tumorostatic effects. In keratinocytes 20(OH)D(2) inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)(2)D(3) or 25(OH)D(3). 20(OH)D(2) is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D(3) with the mouse and human enzymes, respectively. No conversion of 20(OH)D(2) to 1,20(OH)(2)D(2) was detected in intact HaCaT keratinocytes. 20(OH)D(2) also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)(2)D(3). The phenotypic effects of 20(OH)D(2) are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D(2) induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)(2)D(3). In vivo tests show that while 1,25(OH)(2)D(3) at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D(2) is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D(2) does not require its transformation to 1,20(OH)(2)D(2) for its biological activity. Thus 20(OH)D(2) shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP27B1.  相似文献   

11.
12.
The active form of Vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], has potent antiproliferative actions on various normal and malignant cells. Calcemic effects, however, hamper therapeutic application of 1,25-(OH)(2)D(3) in hyperproliferative diseases. Two 14-epi-analogs of 1,25-(OH)(2)D(3) namely 19-nor-14-epi-23-yne-1,25-(OH)(2)D(3) (TX522) and 19-nor-14,20-bisepi-23-yne-1,25-(OH)(2)D(3) (TX527), display reduced calcemic effects coupled to an (at least 10-fold) increased antiproliferative potency when compared with 1,25-(OH)(2)D(3). Altered cofactor recruitment by the Vitamin D receptor (VDR) might underlie the superagonism of these 14-epi-analogs. Therefore, this study aims to evaluate their effects at the level of VDR-coactivator interactions. Mammalian two-hybrid assays with VDR and the coactivators TIF2 and DRIP205 showed the 14-epi-analogs to be more potent inducers of VDR-coactivator interactions than 1,25-(OH)(2)D(3). TX522 and TX527 require 30- and 40-fold lower doses to obtain the VDR-DRIP205 interaction induced by 1,25-(OH)(2)D(3) at 10(-8)M. Evaluation of additional 1,25-(OH)(2)D(3)-analogs and their impact on VDR-coactivator interactions revealed a strong correlation between the antiproliferative potency of an analog and its ability to induce VDR-coactivator interactions. In conclusion, these data show that altered coactivator binding by the VDR is one possible explanation for the superagonistic action of the two 14-epi-analogs TX522 and TX527.  相似文献   

13.
Nephrin plays a key role in maintaining the structure of the slit diaphragm in the glomerular filtration barrier. Our previous studies have demonstrated potent renoprotective activity for 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)). Here we showed that in podocytes 1,25(OH)(2)D(3) markedly stimulated nephrin mRNA and protein expression. ChIP scan of the 6-kb 5' upstream region of the mouse nephrin gene identified several putative vitamin D response elements (VDREs), and EMSA confirmed that the VDRE at -312 (a DR4-type VDRE) could be bound by vitamin D receptor (VDR)/retinoid X receptor. Luciferase reporter assays of the proximal nephrin promoter fragment (-427 to +173) showed strong induction of luciferase activity upon 1,25(OH)(2)D(3) treatment, and the induction was abolished by mutations within -312VDRE. ChIP assays showed that, upon 1,25(OH)(2)D(3) activation, VDR bound to this VDRE leading to recruitment of DRIP205 and RNA polymerase II and histone 4 acetylation. Treatment of mice with a vitamin D analog induced nephrin mRNA and protein in the kidney, accompanied by increased VDR binding to the -312VDRE and histone 4 acetylation. 1,25(OH)(2)D(3) reversed high glucose-induced nephrin reduction in podocytes, and vitamin D analogs prevented nephrin decline in both type 1 and 2 diabetic mice. Together these data demonstrate that 1,25(OH)(2)D(3) stimulates nephrin expression in podocytes by acting on a VDRE in the proximal nephrin promoter. Nephrin up-regulation likely accounts for part of the renoprotective activity of vitamin D.  相似文献   

14.
15.
16.
17.
18.
19.
The Vitamin D receptor (VDR) plays a critical role in epidermal homeostasis. The ligand-dependent actions of the VDR attenuate epidermal keratinocyte proliferation and promote keratinocyte differentiation. Calcium can compensate for the absence of the VDR in maintaining a normal program of epidermal keratinocyte differentiation both in vitro and in vivo. In contrast, the effects of VDR ablation on the hair follicle cannot be prevented by maintaining normal calcium levels and are independent of 1,25-dihydroxyvitamin D. These actions of the VDR are critical in the keratinocyte stem cell population that resides in the bulge region of the hair follicle. Absence of a functional VDR leads to a self-renewal and lineage progression defect in this population of stem cells, resulting in the absence of post-morphogenic hair cycles. The molecular partners and downstream target genes of the VDR in this unique population of cells have not yet been identified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号