首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiyagarajan V  Qian PY 《Proteomics》2008,8(15):3164-3172
The barnacle, Balanus amphitrite, is one of the primary model organisms for rocky-shore ecology studies and biofouling research. This barnacle species has a complex life cycle during which the swimming nauplius molts six times and transforms into a cyprid stage. Cyprids must attach to a surface to metamorphose into a juvenile barnacle. To clarify the overall profile of protein expression during larval development and metamorphosis, 2-DE was used to compare the proteome of the nauplius, the swimming cyprid, the attached cyprid, and the metamorphosed cyprid. The proteome of the swimming cyprid was distinctly different from that of other life stages and had about 400 spots. The proteomes of the attached and metamorphosed cyprids were similar with respect to major proteins but had significantly lower numbers of spots compared to that of swimming larval stages. Obviously, synthesis of most proteins from swimming cyprids was switched off after attachment and metamorphosis. Our advanced MS analysis (MALDI-TOF/TOF MS/MS) allowed us to identify the proteins that were differentially and abundantly expressed in the swimming cyprid. These proteins included signal transduction proteins (adenylate cyclase and calmodulin) and juvenile hormone binding proteins. In summary, for the first time, we have analyzed the global protein expression pattern of fouling marine invertebrate larvae during metamorphosis. Our study provides new insights into the mechanisms of barnacle larval metamorphosis and also provides a foundation for exploring novel targets for antifouling treatments.  相似文献   

2.
藤壶金星幼虫附着变态机制   总被引:1,自引:1,他引:0  
饶小珍  林岗  许友勤 《生态学报》2013,33(16):4846-4856
藤壶属节肢动物门(Arthropoda)甲壳亚门(Crustacea)蔓足下纲(Cirripedia)围胸总目(Thoracica), 具备特殊的形态结构、生活史和种群生态特征,是最主要的海洋污损生物。其幼虫阶段通常经历6期无节幼体和1期不摄食的金星幼虫,从浮游的金星幼虫附着变态成固着的稚体是藤壶生活史中的一个关键环节。外界化学和生物因子中成体提取物、水溶性信息素、足迹、神经递质、激素、生物膜等均影响藤壶金星幼虫的附着变态;内在因子即金星幼虫的生理状态(能量储量和年龄)决定了其对外界因子的反应程度。概括了近年来藤壶附着变态生理机制和分子机制研究的进展,可为深入了解藤壶金星幼虫附着变态机制提供参考,也为开发新型、高效、环保的防污剂提供理论指导。  相似文献   

3.
It has been suggested that bacteria associated with soft-bodied organisms are suggested to produce bioactive compounds against the attachment of invertebrate larvae and bacteria onto the surface of these organisms. Our recent study has demonstrated that epibiotic bacteria from the surface of the soft coral Dendronephthya sp. (Coelenterata: Octocoralia, Alcyonacea) inhibit the growth of bacteria commonly found in marine natural biofilms. In the present study, the effect of 11 epibiotic bacteria isolated from the surface of Dendronephthya sp. on larval settlement of the tubeworms Hydroides elegans was examined using laboratory bioassay. Among 11 bacterial isolates, 2 strains (18%) inhibited the larval settlement of H. elegans (Haswell), 4 strains (36%) were “inductive” to larvae and the remaining 5 strains (46%) were “non-inductive”. There was no correlation between the antifouling activities of bacterial isolates and their phylogenetic origin, i.e. closely related bacterial strains showed different effects on larval settlement of H. elegans. When all “inductive”, “non-inductive” and “inhibitive” bacterial isolates were mixed in a 1:1:1 ratio, the effect of the resultant multispecies film on larval settlement became “inhibitive”. Waterborne compounds of Vibrio sp. and an unidentified α-Proteobacterium, which suppressed the settlement of H. elegans and Bugula neritina (L.) larvae, were further investigated using size fractionation and bioassay-guided enzymatic analysis. It was found that antilarval settlement compounds from these bacteria were heat-stable polysaccharides with a molecular weight >100 kDa. The results indicate that the bacteria associated with the soft coral Dendronephthya sp. may contribute to the antifouling mechanisms of the soft-bodied organisms by producing compounds that are against bacterial growth and settlement of macrofoulers on the surface of their host.  相似文献   

4.
The acorn barnacle Balanus amphitrite (syn. Amphibalanus amphitrite) is a model organism to investigate pelago-benthic transitions in marine invertebrates. A driver for larval settlement in this organism is the need to attach close to conspecifics, to allow reproduction to take place. Adult barnacles are covered by microbial biofilms and the contribution of these biofilms to conspecific recognition is not fully understood. Little information is available on microbial communities associated with B. amphitrite. We compared biofilm communities from the barnacle shell surface with those from the surrounding rocks using the culture-independent methods of quantitative PCR and denaturing gradient gel electrophoresis. Quantification of the relative abundances of higher bacterial taxa showed that barnacles hosted a greater proportion of α-Proteobacteria compared to rock-associated biofilms (p < 0.01). Differences in relative abundances of other taxa were not observed but DGGE profiling suggested that differences were present at lower taxonomic levels. The capacity of these communities to influence larval settlement was assessed by growing multispecies biofilms on artificial medium, obtained by extracting nutrients from adult barnacles. Biofilms composed of shell-associated bacteria were capable of promoting conspecific settlement by 67% compared to control surfaces (p < 0.05), while rock-associated communities showed contrasting effects. A taxonomic comparison of settlement-stimulating and -inhibiting bacteria was performed by DGGE and band sequencing. All partial 16S rRNA genes sequenced were similar to members of the Vibrio and Pseudoalteromonas genera, suggesting that larvae can detect and respond to variations in the composition of microbial biofilms at low taxonomic levels. Our results indicate that barnacle larvae may be able to detect parentally-associated biofilms and use this information to settle close to members of its own species.  相似文献   

5.
This study investigated whether surface-associated compounds isolated from the macroalga Fucus vesiculosus had the potential to mediate microbial and/or macrobial epibiosis similar to that on the natural alga. To selectively yield thallus-associated compounds and avoid contamination by intracellular algal compounds, cell lysis was monitored by surface microscopy of algal cells and chemical profiling of algal surface extracts by coupled gas chromatography mass spectroscopy. The optimized extraction resulted in polar and non-polar algal surface extracts. The non-polar surface extract was immobilized in hydrogel, the polar surface extract was homogeneously perfused through the gel to ensure a temporally constant delivery of polar extract components. During a 7 day field trial, bacterial biofilms were formed on control gels and gels featuring polar and/or non-polar extract components. PERMANOVA revealed that bacterial community profiles on controls and on gels featuring polar or non-polar extract were significantly different from the profile on F. vesiculosus, while the profile on the gels bearing both polar and non-polar extracts was not. Moreover, the polar surface extracts inhibited the settlement of barnacle cyprids. Considering the pronounced effects of bacterial biofilms on invertebrate larval settlement, these results suggest that algal surface chemistry affects macrofouling not only directly but also indirectly, via its control of biofilm formation and composition.  相似文献   

6.
7.
AbstractThe impact of a commonly-used antifouling algicide, Irgarol 1051, on the larval development and post-settlement metamorphosis of the barnacle, Balanus albicostatus Pilsbry (Crustacea: Cirripedia), and the larval metamorphosis of a serpulid polycheate, Pomatoleios kraussii Baird, was evaluated. In the case of B. albicostatus, larval mortality increased with an increase in the concentration of Irgarol 1051, and there was a shift in the larval stage targeted from advanced instars to early instars. Nauplii that survived to the cyprid instar stage when reared in the presence of Irgarol 1051 showed prolonged instar and total naupliar duration when compared to the controls. The post-settlement metamorphosis of cyprids significantly varied with Irgarol concentration and also with biofilm age. One and 2-d-old untreated biofilms showed higher metamorphosis when compared to 5-d-old biofilms. However, when the biofilms that promoted cyprid metamorphosis were treated with Irgarol 1051 at low concentrations, metamorphosis rates decreased. Cyprids were prevented from metamorphosing completely by biofilms treated at the highest concentration of Irgarol 1051. Inhibition of metamorphosis was also observed in the case of competent polychaete larvae when exposed to Irgarol 1051 compared to those exposed to metamorphosis inducers such as 3-iso-butyl-1-methylxanthine (IBMX) and natural biofilms. Identification of the pathway(s) that caused the promotory biofilms to become toxic when exposed to Irgarol 1051 is discussed.  相似文献   

8.

The green alga Ulva reticulata (Forsskal) is often free from biofouling in Hong Kong waters. An early study indicated that bioactive substances from this alga inhibit settlement of the polychaete Hydroides elegans (Haswell). It is also predicted that epibiotic bacteria protect this alga from micro- and macrofouling. In this study, bacterial strains from the surface of U. reticulata were isolated and their inhibitive activities on micro- and macrofouling assayed. The strains were identified by 16S rRNA analysis as belonging to the genera Alteromonas , Pseudoalteromonas and Vibrio . There was no significant effect of these strains or their extracts (aqueous and ethanol) on the growth of five Vibrio strains isolated from natural biofilm. Two bacterial strains ( Alteromonas sp. and Vibrio sp. 3) were non-toxic to the benthic diatom Nitzschia paleacea (Grunow) while the other five strains caused a low level of mortality. No one bacterial strain was toxic to the larvae of H. elegans . Aqueous extract of one of the isolated bacterial species, i.e. Vibrio sp. 2, significantly ( p <0.00001) inhibited the settlement and metamorphosis of H. elegans larvae. The putative antifouling compounds have a molecular weight of >100 kD. On the other hand, biofilm of Pseudoalteromonas sp. 2 and aqueous extract of Vibrio sp. 2 suppressed the settlement of larvae induced by 3-isobutyl-1-methylxanthine (IBMX). Other epibiotic bacteria and their extracts had neither inhibitive nor inductive effects on larval settlement of H. elegans . The results indicate that the antifouling mechanism of U. reticulata may be dependent not only on materials from the macroalga itself but also on the epibiotic bacteria on the algal surface.  相似文献   

9.
Effects of epibiotic bacteria associated with macroalgae on barnacle larval attachment were investigated. Eight bacterial isolates obtained from samples of three macroalga species were cultured as monospecies bacterial films and tested for their activity against barnacle (Amphibalanus improvisus) attachment in field experiments (Western Baltic Sea). Furthermore, natural biofilm communities associated with the surface of the local brown alga, Fucus vesiculosus, which were exposed to different temperatures (5, 15 and 20?°C), were harvested and subsequently tested. Generally, monospecies bacterial biofilms, as well as natural microbial assemblages, inhibited barnacle attachment by 20-67%. denaturing gradient gel electrophoresis fingerprints showed that temperature treatment shifted the bacterial community composition and weakened the repellent effects at 20?°C. Repellent effects were absent when settlement pressure of cyprids was high. Nonviable bacteria tended to repel cyprids when compared to the unfilmed surfaces. We conclude that biofilms can have a repellent effect benefiting the host by preventing heavy fouling on its surface. However, severe settlement pressure, as well as stressful temperature, may reduce the protective effects of the alga's biofilm. Our results add to the notion that the performance of F.?vesiculosus may be reduced by multiple stressors in the course of global warming.  相似文献   

10.
Barnacles have evolved a number of specialized features peculiar for crustaceans: they produce a calcified, external shell; they exhibit sexual strategies involving dioecy and androdioecy; and some have become internal parasites of other Crustacea. The thoroughly sessile habit of adults also belies the highly mobile and complex nature of their larval stages. Given these and other remarkable innovations in their natural history, it is perhaps not surprising that barnacles present a spectrum of opportunities for study. This symposium integrates research on barnacles in the areas of larval biology, biofouling, reproduction, biogeography, speciation, population genetics, ecological genomics, and phylogenetics. Pioneering comparisons are presented of metamorphosis among barnacles from three major lineages. Biofouling is investigated from the perspectives of biochemical and biomechanical mechanisms. Tradeoffs in reproductive specializations are scrutinized through theoretical modeling and empirical validation. Patterns of endemism and diversity are delineated in Australia and intricate species boundaries in the genus Chthamalus are elucidated for the Indo-Pacific. General methodological concerns with population expansion studies in crustaceans are highlighted using barnacle models. Data from the first, draft barnacle genome are employed to examine location-specific selection. Lastly, barnacle evolution is framed in a deep phylogenetic context and hypothetical origins of defined characters are outlined and tested.  相似文献   

11.
Li X  Dobretsov S  Xu Y  Xiao X  Hung OS  Qian PY 《Biofouling》2006,22(3-4):201-208
Modern antifouling coatings use heavy metals and toxic organic molecules to prevent biofouling, the undesirable growth of marine organisms on man-made substrata. In an ongoing survey of deep-sea microorganisms aimed at finding low toxic antifouling metabolites, an actinomycete bacterium was isolated from the Pacific sediment at the depth of about 5000 m. The bacterium was closely related to Streptomyces fungicidicus (99% similarity) according to 16S ribosomal RNA sequence information. The spent culture medium of this bacterium inhibited barnacle larval attachment. Bioassay-guided fractionation was employed to isolate antifouling compounds. The ethyl acetate extract was fractionated by using an open silica gel column. Active fractions were further purified on a HPLC C18 column. Five diketopiperazines, cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Pro), cyclo-(L-Trp-L-Pro), and cyclo-(L-Leu-L-Val) were isolated for the first time from a deep sea bacterium, and the structures of the compounds were elucidated by nuclear magnetic resonance spectroscopy and mass spectrometry. The pure diketopiperazines were tested for antilarval activity using the barnacle Balanus amphitrite. Effective concentrations that inhibited 50% larval attachment (EC50) after 24 h ranged from 0.10- 0.27 mM. The data suggest that diketopiperazines and other compounds from deep-sea bacteria may be used as novel antifoulants.  相似文献   

12.
Abstract

The impact of a commonly-used antifouling algicide, Irgarol 1051, on the larval development and post-settlement metamorphosis of the barnacle, Balanus albicostatus Pilsbry (Crustacea: Cirripedia), and the larval metamorphosis of a serpulid polycheate, Pomatoleios kraussii Baird, was evaluated. In the case of B. albicostatus, larval mortality increased with an increase in the concentration of Irgarol 1051, and there was a shift in the larval stage targeted from advanced instars to early instars. Nauplii that survived to the cyprid instar stage when reared in the presence of Irgarol 1051 showed prolonged instar and total naupliar duration when compared to the controls. The post-settlement metamorphosis of cyprids significantly varied with Irgarol concentration and also with biofilm age. One and 2-d-old untreated biofilms showed higher metamorphosis when compared to 5-d-old biofilms. However, when the biofilms that promoted cyprid metamorphosis were treated with Irgarol 1051 at low concentrations, metamorphosis rates decreased. Cyprids were prevented from metamorphosing completely by biofilms treated at the highest concentration of Irgarol 1051. Inhibition of metamorphosis was also observed in the case of competent polychaete larvae when exposed to Irgarol 1051 compared to those exposed to metamorphosis inducers such as 3-iso-butyl-1-methylxanthine (IBMX) and natural biofilms. Identification of the pathway(s) that caused the promotory biofilms to become toxic when exposed to Irgarol 1051 is discussed.  相似文献   

13.
The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2) in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.  相似文献   

14.
Serotonin and dopamine are involved in the attachment and metamorphosis of cypris larvae of barnacles. Aromatic L-amino acid decarboxylase (AADC) gene, the product of which catalyzes the synthesis of serotonin and dopamine from L-5-hydroxytryptophan and L-3,4-dihydroxyphenylalanine, respectively, was characterized. A DNA clone containing part of an AADC sequence was obtained from the genomic DNA library of the barnacle, Balanus amphitrite. This clone had four putative exons consisting of 226 amino acids with an identity of 63.2% and a similarity of 92.1% with human AADC. Northern blot analysis showed that AADC mRNA was expressed at all stages of barnacles: naupliar larvae, cypris larvae and adult barnacles. Two inducers of larval attachment and metamorphosis; that is, serotonin and extract of adult barnacles, obviously increased the expression of AADC mRNA at an early cypris larval stage. These results suggest that intracellular biosynthesis of serotonin, or dopamine, or both is at least partly involved in the control of the attachment and metamorphosis of cypris larvae.  相似文献   

15.
To test models of the timing of and size at metamorphosis, researchers manipulate food at several times during the larval phase of an animal's complex life cycle. Data from diverse taxa show that the age at metamorphosis becomes resource independent (i.e., fixed) at some point during the larval phase. Although existing models have been modified to incorporate a fixed rate of development, none predicts when phenotypic plasticity in metamorphic timing is lost. A graphical model is presented that extends knowledge of a genotype's optimal age and size at metamorphosis in different environments in which resources remain constant throughout the larval phase (i.e., the genotype's reaction norm) to predict when development rate becomes fixed in response to resource variability during the larval phase. Model predictions concur with data from food-switching experiments on anuran tadpoles and barnacle nauplii. As interest in the timing of and size at metamorphosis expands from well-studied taxa (e.g., amphibians) to the many others that have complex life cycles, the predictive model provides a useful tool to design and improve experiments.  相似文献   

16.
Abstract

Modern antifouling coatings use heavy metals and toxic organic molecules to prevent biofouling, the undesirable growth of marine organisms on man-made substrata. In an ongoing survey of deep-sea microorganisms aimed at finding low toxic antifouling metabolites, an actinomycete bacterium was isolated from the Pacific sediment at the depth of about 5000 m. The bacterium was closely related to Streptomyces fungicidicus (99% similarity) according to 16S ribosomal RNA sequence information. The spent culture medium of this bacterium inhibited barnacle larval attachment. Bioassay-guided fractionation was employed to isolate antifouling compounds. The ethyl acetate extract was fractionated by using an open silica gel column. Active fractions were further purified on a HPLC C18 column. Five diketopiperazines, cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Pro), cyclo-(L-Trp-L-Pro), and cyclo-(L-Leu-L-Val) were isolated for the first time from a deep sea bacterium, and the structures of the compounds were elucidated by nuclear magnetic resonance spectroscopy and mass spectrometry. The pure diketopiperazines were tested for antilarval activity using the barnacle Balanus amphitrite. Effective concentrations that inhibited 50% larval attachment (EC50) after 24 h ranged from 0.10 – 0.27 mM. The data suggest that diketopiperazines and other compounds from deep-sea bacteria may be used as novel antifoulants.  相似文献   

17.
18.
实验了不同大蒜汁浓度(0、2、4、8、16、32 mg/L)对菲律宾蛤仔受精卵孵化率,幼虫生长、存活、变态及稚贝生长与存活的影响,总结了室内大规模人工育苗过程中大蒜防病效果。结果表明:随着大蒜汁浓度的增加,孵化率降低;大蒜汁浓度达到16mg/L,胚胎发育延迟;达到32mg/L,受精卵不能孵化为正常幼虫。浮游期间,幼虫的生长受大蒜汁抑制,幼虫的存活率则随着大蒜汁浓度增加先升高后降低;幼虫的变态率随着大蒜汁浓度的增加先升高后降低,以16mg/L为最适浓度;变态规格随着大蒜汁浓度增加而减小。室内培育期间,稚贝生长与存活随着大蒜汁浓度的增加先升高后降低,以8mg/L为最适浓度;室内大规模人工育苗过程中,使用浓度为8-10mg/L大蒜汁可以起到较好的防病效果。  相似文献   

19.
The effects of films of two strains of a marine bacterium, Deleya marina (ATCC 25374 and 27129) on the attachment response of cypris larvae of the balanomorph barnacle, Balanus amphitrite, were examined in the laboratory. Tests showed that the cell-surface hydrophobicities of the two bacteria in suspension were different. In contrast, films derived from these cells were both highly wettable (i.e., displayed high surface free energy). Assays (22 hours) compared permanent attachment of larval barnacles to films derived from exponential and stationary phase cells for both bacteria. These films either had no effect or inhibited attachment of both 0-day- and 4-day-old cypris larvae when compared with unfilmed controls. Our data indicate that inhibition of larval barnacle attachment by films of the two bacteria is the result of factors other than surface free energy. Production of chemical barnacle settlement inhibitors by the bacteria is hypothesized.Offprint requests to: J. S. Maki.  相似文献   

20.
The exoskeleton of most invertebrate larval forms is made of chitin, which is a linear polysaccharide of β (1→4)-linked N-acetylglucosamine (GlcNAc) residues. These larval forms offer extensive body surface for bacterial attachment and colonization. In nature, degradation of chitin involves a cascade of processes brought about by chitinases produced by specific bacteria in the marine environment. Microbial decomposition of larval carcasses serves as an alternate mechanism for nutrient regeneration, elemental cycling and microbial production. The present study was undertaken to assess the influence of chitinase enzyme on the degradation of the nauplii of barnacle, Balanus amphitrite. The survival and abundance of bacteria during the degradation process under different experimental conditions was monitored. To the best of our knowledge, no such study is conducted to understand the degradation of larval exoskeleton using chitinase and its influence on bacteria. An increase in the chitinase activity with increase in temperature was observed. Scanning electron micrographs of chitinase treated nauplii showed scars on the surface of the barnacle nauplii initially and further disruption of the exoskeleton was observed with the increase in the treatment time. Bacterial abundance of the chitinase treated nauplii increased with the increase in enzyme concentration. Pathogenic bacteria such as Vibrio cholerae, V. alginolyticus, V. parahaemolyticus which were initially associated with the exoskeleton were absent after chitinase treatment, however, Bacillus spp. dominated subsequent to chitinase treatment and this might have important implications to marine ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号