首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The midpoint potentials of the primary electron acceptors in chromatophores from Rhodopseudomonas spheroides and Chromatium have been studied by titrating the laser-induced P605 and cytochrome c oxidations, respectively. Both midpoint potentials are pH dependent (60 mV/pH unit).o-Phenanthroline shifts the midpoint potentials of the primary acceptors, by +40 mV in Rps spheroides and +135 mV in Chromatium. A similar though less extensive change in midpoint potential was observed in the presence of batho-phenanthroline, but not with 8-hydroxyquinoline. The shifted midpoints retain the same dependence on pH.Some of the effects of o-phenanthroline can be explained by assuming that it chelates the reduced form of the primary electron acceptor. This suggests the presence in the primary electron acceptor of a metal chelated by o- and batho-phenanthroline.In Rps spheroides chromatophores o-phenanthroline inhibits the laser- and flash-induced carotenoid shift at all redox potentials, stimulates the laser-induced P605 oxidation at redox potentials between +350 and +420 mV and slows the decay of the laser-induced cytochrome c oxidation below +180 mV. These effects show that o-phenanthroline may have more than one site of action.  相似文献   

2.
The effect of NADP+ on light-induced steady-state redox changes of membrane-bound cytochromes was investigated in membrane fragments prepared from the blue-green algae Nostoc muscorum (Strain 7119) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NADP+. The membrane fragments contained very little phycocyanin and had excellent optical properties for spectrophotometric assays. With DCIPH2 as the electron donor, NADP+ had no effect on the light-induced redox changes of cytochromes: with or without NADP+, 715- or 664-nm illumination resulted mainly in the oxidation of cytochrome f and of other component(s) which may include a c-type cytochrome with an α peak at 549 nm. With 664 nm illumination and water as the electron donor, NADP+ had a pronounced effect on the redox state of cytochromes, causing a shift toward oxidation of a component with a peak at 549 nm (possibly a c-type cytochrome), cytochrome f, and particularly cytochrome b559. Cytochrome b559 appeared to be a component of the main noncyclic electron transport chain and was photooxidized at physiological temperatures by Photosystem II. This photooxidation was apparent only in the presence of a terminal acceptor (NADP+) for the electron flow from water.  相似文献   

3.
In Chromatium chromatophores, the response of part of the carotenoid complement to a light-induced membrane potential is a shift to the blue of its absorption spectrum, as indicated by the characteristics of the light-minus-dark difference spectrum. The spectrum in the dark of the population of carotenoid which responds to a light-induced membrane potential is located at least 1–2 nm to the red in comparison to the total carotenoid absorption. The results indicate that the proposed permanent electric field affecting the responding population has a polarity with respect to the chromatophore membrane opposite to that in Rhodopseudomonas sphaeroides chromatophores. The carotenoid absorption change interferes seriously with measurements of cytochrome c-555 redox changes at its α band.  相似文献   

4.
In chromatophores from the facultative photosynthetic bacterium, Rhodopseudomonas sphaeroides, Ga, the function of ubiquinone-10 (UQ-10) at two specialized binding sites (QB and QZ) has been determined by kinetic criteria. These were the rate of rereduction of flash-oxidized [BChl]2+ through the back reaction, or the binary pattern of cytochrome b561 (for the Qb site), and the rapid rate of rereduction of flash-oxidized cytochrome c, or the relative amplitude of the antimycin-sensitive Phase III (t12 ~ 1.5 ms) of the carotenoid spectral shift induced by a single turnover flash at Eh ~ 100 mV (for the QZ site). The phenomenon associated with the two binding sites behaved differently on extraction of UQ from lyophilized chromatophores using isooctane. By this selective extraction procedure it has been possible to show that UQ-10 molecules are required at different concentrations in the membrane for specific redox events in secondary electron transfer. The reduction of cytochrome b occurs in particles which no longer show the phenomena associated with QZ, but still possess a large proportion of Qb, while rapid rereduction of flash-oxidized cytochrome c requires an additional complement of UQ-10 (QZ). Extracted particles lacking QZ and a large amount of QB have been reconstituted with different UQ homologs (UQ-1, UQ-3, and UQ-10). Specific redox events have been studied in reconstituted particles. All UQ homologs act as secondary acceptors from the reaction center; UQ-3 and UQ-10, but not UQ-1, are also able to reconstitute the function of QZ as electron donor to cytochrome c. Only UQ-10, however, is able to restore normal rates of the overall cyclic electron transfer induced by a train of flashes, and maximal rates of the light-induced ATP synthesis. The results are interpreted in terms of Q-cycle mechanisms in which quinone and quinol at both the QZ and Qb sites are in rapid equilibrium with the quinone pool.  相似文献   

5.
The reduction of ferricytochrome c in the presence of 6-hydroxydopamine/O2 mixtures was examined under various reaction conditions. As the autoxidation of 6-hydroxy-dopamine progressed to completion, there were fluctuations in the net redox reactivity between reducing and oxidizing steady states. This was reflected in a sequence of damped oscillations in the redox state of cytochrome c. Corresponding to the time when 6-hydroxydopamine was 75–100% exhausted, reoxidation of the ferrocytochrome c occurred (prevented by catalase or catalase plus Superoxide dismutase). After the H2O2, in turn, was mostly consumed, the next phase commenced in which the cytochrome c became reduced for a second time. This reductive phase was 52% inhibited by superoxide dismutase. In the subsequent and final phase of the process, a progressive oxidation of cytochrome c lasting at least 24 h was observed. Of the initial reduction of ferricytochrome c, at most 37% can be attributed to direct reduction by 6-hydroxydopamine or its semiquinone. This initial net reduction of cytochrome c was inhibited 51% by superoxide dismutase and 41% by catalase. However, since either catalase or superoxide dismutase inhibited the autoxidation of 6-hydroxydopamine by at least as much as it slowed the reduction of cytochrome c, their effects in slowing the reduction of cytochrome c resulted largely from the decreased production of those free radicals which reduce ferricytochrome c, and only in part from accelerated removal. Elimination of the actions of transition metal ions (whether by passage of the buffer solutions through Chelex 100 resins or by addition of desferrioxamine to the reaction medium) slowed both the reoxidation and rereduction by up to 96%. Addition of mannitol decreased the rate of the first reoxidation by 25% and increased the rate of the rereduction by 7%. In general, the oscillations are explicable in terms of changes in the steady state levels of O2 and H2O2, with metal ions playing a major role and hydroxyl radicals a minor role in both the reoxidation and rereduction.  相似文献   

6.
P.Leslie Dutton  John S. Leigh 《BBA》1973,314(2):178-190
The combination of redox potentiometry with low temperature electron spin resonance (ESR) spectroscopy has led to further characterization of electron transfer components of Chromatium D. These include the readily buffer-soluble cytochromes c553 and c′ and the high-potential iron-sulfur protein in the isolated state and associated with the chromatophore membrane. Buffer-insoluble cytochrome c553, cytochro—me c555, bacteriochlorophyll and the primary electron acceptor have been characterized both in the chromatophore membrane and also in a sodium dodecylsulfate detergent-solubilized subchromatophore preparation. Two iron-sulfur proteins have been revealed which are present in the chromatophore membrane but are released on treatment with sodium dodecylsulfate. They have central g values at 1.90 and 1.94 and have estimated midpoint potentials at pH 7.4 (Em7·4) at +280 mV and ?100 mV, respectively, when associated with the chromatophore.In the membrane associated state the apparent Em of cytochrome c′ is approximately 200 mV more positive than the Em values reported for the free state; this implies either that the reduced form of cytochrome c′ binds to the membrane (or to a component therein) to a degree which is > 103 times greater than that of the oxidized form or that the Em shift results from membrane solvation. In the case of the high-potential iron-sulfur protein however, its Em when associated with the chromatophore membrane is similar to that reported in the isolated state. The light-induced oxidation of the high-potential iron-sulfur protein at room temperature appears to be linked only to the oxidation of cytochrome c555; it could serve as an electron pool in equilibrium with cytochrome c555 in the cyclic electron flow system.The redox component defined in the reduced state by its gy = 1.82 and gx = 1.62 ESR spectrum satisfies the following criteria for its identification as the primary electron acceptor of P883. (a) The Em7·4 value of the g = 1.82 component is ?120 ± 25mV. (b) At ?70 mV, where the g = 1.82 component is mainly oxidized in the dark, brief illumination at low temperature which causes the irreversible oxidation of one cytochrome c553 heme, also induces the permanent reduction of the g = 1.82 component; the extent of reduction after brief illumination, given by the g = 1.82 signal height, is the same as that induced chemically at ?270 mV showing it to be fully reduced by the receipt of a single electron. (c) At more positive potentials where cytochrome c553 is oxidized and is not involved in low-temperature reactions, the light-induced low-temperature kinetics of the g = 1.82 signal are reversible; the flash-induced g = 1.82 formation and subsequent dark decay are the same as those for the flash-induced P+883 (g = 2) formation and dark decay. We suggest that until a full physical-chemical characterization is completed this g = 1.82 component be designated “photoredoxin”.  相似文献   

7.
Kinetics of electron transfer from soluble cytochrome c2 to the tetraheme cytochrome c have been measured in isolated reaction centers and in membrane fragments of the photosynthetic purple bacterium Rhodopseudomonas viridis by time-resolved flash absorption spectroscopy. Absorbance changes kinetics in the region of cytochrome -bands (540–560 nm) were measured at 21 °C under redox conditions where the two high-potential hemes (c-559 and c-556) of the tetraheme cytochrome were chemically reduced. After flash excitation, the heme c-559 donates an electron to the special pair of bacteriochlorophylls and is then re-reduced by heme c-556. The data show that oxidized heme c-556 is subsequently re-reduced by electron transfer from reduced cytochrome c2 present in the solution. The rate of this reaction has a non-linear dependence on the concentration of cytochrome c2, suggesting a (minimal) two-step mechanism involving the f ormation of a complex between cytochrome c2 and the reaction center, followed by intracomplex electron transfer. To explain the monophasic character of the reaction kinetics, we propose a collisional mechanism where the lifetime of the temporary complex is short compared to electron transfer. The limit of the halftime of the bimolecular process when extrapolated to high concentrations of cytochrome c2 is 60 ± 20 s. There is a large ionic strength effect on the kinetics of electron transfer from cytochrome c2 to heme c-556. The pseudofirst-order rate constant decreases from 1.1 × 107 M-1 s-1 to 1.3 × 106 M-1 s-1 when the ionic strength is increased from 1 to 1000 mM. The maximum rate (1.1 × 107 M-1 s-1) was obtained at about 1 mM ionic strength. This dependence of the rate on ionic strength s uggests that attractive electrostatic interactions contribute to the binding of cytochrome c2 with the tetraheme cytochrome. On the basis of our data and of previous molecular modelling, it is proposed that cytochrome c2 docks close to the low-potential heme c-554 and reduces heme c-556 via c-554.  相似文献   

8.
The effect of isooctane extraction on photooxidation ofc-type cytochromes was investigated inChromatium chromatophores.Photooxidation of cytochromec-555 was not affected by isooctane-extraction except that the dark recovery was accelerated. Photooxidation of cytochromec-552 was abolished by thorough extraction of ubiquinone-7, but the quantum yield of the cytochrome photooxidation remained unchanged until 90|X% of the total ubiquinone was extracted. The photooxidation of cytochromec-552 was recovered by the addition of ubiquinone-7 but not by menaquinone. A dark incubation of sufficient length was needed for maximal quantum yield of cytochromec-555 photooxidation in the presence of 30 mM ascorbate.It is proposed that there are two types of photosynthetic units (or associations of molecules involved in the primary redox reactions) inChromatium chromatophores. The combinations of primary electron donor-reaction center chlorophyll-primary electron acceptor may be cytochromec-552-P890-ubiquinone in one type and cytochromec-555-P890-X in another.  相似文献   

9.
Yusuke Tsukatani  Chihiro Azai  Shigeru Itoh 《BBA》2008,1777(9):1211-1217
We studied the regulation mechanism of electron donations from menaquinol:cytochrome c oxidoreductase and cytochrome c-554 to the type I homodimeric photosynthetic reaction center complex of the green sulfur bacterium Chlorobium tepidum. We measured flash-induced absorption changes of multiple cytochromes in the membranes prepared from a mutant devoid of cytochrome c-554 or in the reconstituted membranes by exogenously adding cytochrome c-555 purified from Chlorobium limicola. The results indicated that the photo-oxidized cytochrome cz bound to the reaction center was rereduced rapidly by cytochrome c-555 as well as by the menaquinol:cytochrome c oxidoreductase and that cytochrome c-555 did not function as a shuttle-like electron carrier between the menaquinol:cytochrome c oxidoreductase and cytochrome cz. It was also shown that the rereduction rate of cytochrome cz by cytochrome c-555 was as high as that by the menaquinol:cytochrome c oxidoreductase. The two electron-transfer pathways linked to sulfur metabolisms seem to function independently to donate electrons to the reaction center.  相似文献   

10.
Some of the photosynthetic reactions were measured under aerobic and anaerobic conditions in intact cells of an aerobic photosynthetic bacterium Erythrobacter species strain OCh 114 (ATCC No. 33942). In intact cells, the flash-light induced oxidation of cytochrome c-551, the continuous light-induced oxidation of reaction center bacteriochlorophyll and the continuous light-induced pH change ( ) of the suspension decreased on aerobic-anaerobic transition and almost disappeared under anaerobic conditions. These photosynthetic reactions reappeared when the suspension was aerated again. These phenomena were reconciled with the fact that Erythrobacter sp. cannot grow anaerobically even in the light. The incompetence of photoanaerobic growth of this bacterium was explained by the reduction of the primary electron acceptor (QI) before illumination, resulting partly from the relatively high midpoint potential of QI of this bacterium.Abbreviations QI Primary electron acceptor - Eh ambient redox potential - Em midpoint redox potential  相似文献   

11.
Cytochrome redox changes and electric potential generation are kinetically compared during cyclic electron transfer in Photosystem-I-enriched and Photosystem-II-depleted subchloroplast vesicles (i.e., stroma lamellae membrane vesicles) supplemented with ferredoxin using a suitable electron donating system. In response to a single-turnover flash, the sequence of events is: (1) fast reduction of cytochrome b-563 (t0.5 ≈ 0.5 ms) (2) oxidation of cytochrome c-554 (t0.5 ≈ 2 ms), (3) slower reduction of cytochrome b-563 (t0.5 ≈ 4 ms), (4) generation of the ‘slow’ electric potential component (t0.5 ≈ 15–20 ms), (5) re-reduction of cytochrome c-554 (t0.5 ≈ 30 ms) and (6) reoxidation of cytochrome b-563t0.5 ≈ 90 ms). Per flash two cytochrome b-563 species turn over for one cytochrome c-554. These b-563 cytochromes are reduced with different kinetics via different pathways. The fast reductive pathway proceeds probably via ferredoxin, is insensitive to DNP-INT, DBMIB and HQNO and is independent on the dark redox state of the electron transfer chain. In contrast, the slow reductive pathway is sensitive to DNP-INT and DBMIB, is strongly delayed at suboptimal redox poising (i.e., low NADPHNADP+ ratio) and is possibly coupled to the reduction of cytochrome c-554. Each reductive pathway seems obligatory for the generation of about 50% of the slow electric potential component. Also cytochrome c-559LP (LP, low potential) is involved in Photosystem-I-associated cyclic electron flow, but its flash-induced turnover is only observed at low preestablished electron pressure on the electron-transfer chain. Data suggest that cyclic electron flow around Photosystem I only proceeds if cytochrome b-559LP is in the reduced state before the flash, and a tentative model is presented for electron transfer through the cyclic system.  相似文献   

12.
In Chromatium D the half-time for laser-induced (20–30-nsec flash) cytochrome C553 oxidation in redox poised chromatophores (1 μsec) and cytochrome C555 oxidation in whole cells (2.5μsec) is not affected by glutaraldehyde fixation. The reduction half-times for both cytochromes, however, increase as different functions of the glutaraldehyde concentration during the whole cell fixation process. At a cell-fixing concentration of 0.8%, cytochrome C555 but not C553 is observed after a laser flash. Steady light-induced spectra using similar preparations suggest the possibility of four components observable in the 500–620-nm range. These are cytochrome C555, P600, a species peaking at 560 nm and a component displaying a light-induced blue shift in the 500–540-nm region which may be a carotenoid response. The wavelength expected for the α-peak (reduced-minus-oxidized) of cytochrome cc′ is 560 nm, but the lack of a corresponding Soret peak makes identification uncertain and raises the possibility that we are observing a totally new component. Comparison of the amount of cytochrome oxidized by steady illumination and by a laser flash shows that on the average there are three cytochrome C555 molecules per reaction center in both whole cells and chromatophores. If the glutaraldehyde acts directly on the reaction center cytochromes then it is clear that cytochrome reduction requires large amplitude motion, but that oxidation does not. However, glutaraldehyde fixation may simply block the path of reducing electrons before they reach reaction center bound cytochromes.  相似文献   

13.
J. Singh  D.C. Wharton 《BBA》1973,292(2):391-401
A procedure is described for the purification of cytochrome c-556 from Pseudomonas aeruginosa. The isolated hemoprotein exists as a dimer with a molecular weight of approximately 77 200. The dimer can be dissociated into a monomeric species (or single polypeptide chain) of 40 500 molecular weight by means of sodium dodecyl sulfate or 4 M urea. The amino acid composition demonstrates the presence of four half-cystine residues per 43 000 molecular weight. Heme and iron analyses indicate that two c-type hemes are covalently linked to each polypeptide chain. The absorption spectrum of ferrocytochrome c-556 has a double α-band with a peak at 556 nm and a shoulder at 552 nm; the β-band appears at 521 nm and the Soret band at 420 nm.The electron paramagnetic resonance spectrum of ferricytochrome c-556 contains the elements of two ferric iron species, one a low spin and the other a high spin form.The function of cytochrome c-556 is obscure. The purified cytochrome does not react with Pseudomonas cytochrome oxidase nor with the Pseudomonas cytochrome c-551 or copper protein.The properties of cytochrome c-556 indicate that it is probably not the same species as the cytochrome c-554 previously isolated from the same organism.  相似文献   

14.
1. The effects of varying the ambient oxidation/reduction potential on the redox changes of cytochromes c, cytochromes b and P605 induced by a laser flash in chromatophores from Rhodopseudomonas capsulata Ala Pho+ have been investigated.2. The appearance and attenuation of the changes with varying ambient redox potential show that, of the cytochromes present, cytochromes c with Em7 = 340 mV and 0 mV, and cytochrome b, Em7 = 60 mV were concerned with photosynthetic electron flow.3. The site of action of antimycin was shown to be between cytochrome b60 and a component, as yet unidentified, called Z.4. The appearance or attenuation of laser-induced changes of cytochromes c0 and b60 on redox titration was dependent on pH, but no effect of pH on the cytochrome c340 titration was observed.5. The dependence on ambient redox potential of the laser-induced bleaching at 605 nm enabled identification of the mid-point potentials of the primary electron donor (Em7 = 440 mV) and acceptor (Em7 = ?25 mV).6. The interrelationship of these electron carriers is discussed with respect to the pathway of cyclic electron flow.  相似文献   

15.
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c552, is similar to a number of c-type cytochromes from the α-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c552 revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.  相似文献   

16.
The subunits of Chlorobium limicala f. thiosulfatophilum cytochrome c-553 and of Chromatium vinosum cytochrome c-552 have been obtained. Chlorobium cytochrome c-553 is split into the cytochrome and flavoprotein subunits by treatment with trichloroacetic acid; after the cytochrome is precipitated by 1–2% trichloroacetic acid, the cytochrome subunit is extractable with buffer, while the flavoprotein subunit is not dissolved. The subunits of Chromatium cytochrome c-552 can not be obtained by the trichloroacetic acid-treatment. The flavoprotein subunit of the Chromatium cytochrome is obtained by isoelectric focusing in the presence of 6 M urea and 1% mercaptoethanol, while the cytochrome subunit is prepared by gel filtration in the presence of 6 M urea with Sephacryl S-200. Molecular weights of the cytochrome and flavoprotein subunits from the Chlorobium cytochrome are 11,000 and 47,000, respectively, while those of the two subunits from the Chromatium cytochrome are 21,000 and 46,000, respectively. The molecule of each flavocytochrome c is composed of one molecule of each of the cytochrome and flavoprotein subunits.  相似文献   

17.
Reaction kinetics of the reduction of O2 by cytochrome oxidase follow essentially the same rate equation as that proposed for the oxidation of cytochrome c. However, the apparent second order rate constant varies with the oxidase concentration. The redox level of cytochrome c at the steady state was found to be essentially temperature-independent. Currently recognized pathways (or mechanisms) of electron transport from cytochrome c to O2 do not predict, and cannot account for the occurrence of these phenomena.  相似文献   

18.
Wel-Ping Lu  R.K. Poole  D.P. Kelly 《BBA》1984,767(2):326-334
Cytochromes c-550 (acidic), c-550 (basic), c-551 and c-552.5 from Thiobacillus versutus have been highly purified and characterized. Their spectral properties at 77 K are described. Oxidation-reduction titrations of cytochromes c-550 (acidic) and c-550 (basic) showed them to exhibit Nernst values of n = 1, with single redox centres in the cytochromes, and to have midpoint redox potentials at pH 7.0 (Em,7) of 290 and 260 mV, respectively. Cytochrome c-551 contained two separately titratable redox components, each giving n = 1. The low potential centre (55% of titratable cytochrome) and the high potential centre (45%) had Em,7 values of ?115 and +240 mV, espectively. Cytochrome c-552.5 also contained at least two redox centres. One (65% of titratable cytochrome) had n = 1 and Em,7 = 220mV. The remaining 35% appeared to be a low potential component with an Em,7 possibly as low as ?215 mV. the roles of these cytochromes in respiratory thiosulphate oxidation are discussed.  相似文献   

19.
The midpoint redox potential of cytochrome c and the electron paramagnetic resonance spectra of nitroxide labeled cytochromes c were measured as a function of binding to purified cytochrome c oxidase, cytochrome c peroxidase, cytochrome b5 and succinate—cytochrome c reductase. The midpoint redox potential of horse heart cytochrome c is lowered in the presence of cytochrome c oxidase and succinate-cytochrome c reductase, but is unchanged in the presence of cytochrome c peroxidase or cytochrome b5. Further evidence of binding is afforded by an increase in correlation time, Tc, of the spin-labeled cytochrome c at methionine 65 upon binding to cytochrome c peroxidase, cytochrome c oxidase and succinate—cytochrome c reductase. The changes in midpoint redox potential and electron paramagnetic resonance spectrum of the spin-labeled derivative upon binding can either be the consequence of specific interaction leading to formation of ES complexes, or it can be due to nonspecific electrostatic interaction between positively charged groups on cytochrome c and negatively charged groups on the isolated cytochrome preparations.  相似文献   

20.
A detailed analysis of the periplasmic electron carriers of the photosynthetic bacterium Ectothiorhodospira sp. has been performed. Two low mid-point redox potential electron carriers, cytochrome c′ and cytochrome c, are detected. A high potential iron–sulfur protein is the only high mid-point redox potential electron transfer component present in the periplasm. Analysis of light-induced absorption changes shows that this high potential iron–sulfur protein acts in vivo as efficient electron donor to the photo-oxidized high potential heme of the Ectothiorhodospira sp. reaction center. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号