首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial strains were isolated from beach water samples using the original Environmental Protection Agency method for Escherichia coli enumeration and analyzed by pulsed-field gel electrophoresis (PFGE). Identical PFGE patterns were found for numerous isolates from 4 of the 9 days sampled, suggesting environmental replication. 16S rRNA gene sequencing, API 20E biochemical testing, and the absence of β-glucuronidase activity revealed that these clonal isolates were Klebsiella, Citrobacter, and Enterobacter spp. In contrast, 82% of the nonclonal isolates from water samples were confirmed to be E. coli, and 16% were identified as other fecal coliforms. These nonclonal isolates produced a diverse range of PFGE patterns similar to those of isolates obtained directly from untreated sewage and gull droppings. β-Glucuronidase activity was critical in distinguishing E. coli from other fecal coliforms, particularly for the clonal isolates. These findings demonstrate that E. coli is a better indicator of fecal pollution than fecal coliforms, which may replicate in the environment and falsely elevate indicator organism levels.  相似文献   

2.
Analyses for the presence of indicator organisms provide information on the microbiological quality of water. Indicator organisms recommended by the United States Environmental Protection Agency for monitoring the microbiological quality of water include Escherichia coli, a thermotolerant coliform found in the feces of warm-blooded animals. These bacteria can also be isolated from environmental sources such as the recreational and pristine waters of tropical rain forests in the absence of fecal contamination. In the present study, E. coli isolates were compared to E. coli K12 (ATCC 29425) by restriction fragment length polymorphism using pulsed-field gel electrophoresis. Theoretically, genomic DNA patterns generated by PFGE are highly specific for the different isolates of an organism and can be used to identify variability between environmental and fecal isolates. Our results indicate a different band pattern for almost every one of the E. coli isolates analyzed. Cluster analysis did not show any relations between isolates and their source of origin. Only the discriminant function analysis grouped the samples with the source of origin. The discrepancy observed between the cluster analysis and discriminant function analysis relies on their mathematical basis. Our validation analyses indicate the presence of an artifact (i.e., grouping of environmental versus fecal samples as a product of the statistical analyses used and not as a result of separation in terms of source of origin) in the classification results; therefore, the large genetic heterogeneity observed in these E. coli populations makes the grouping of isolates by source rather difficult, if not impossible.  相似文献   

3.
The new United States Drinking Water Regulations state that water systems must analyze for Escherichia coli or fecal coliforms on any routine or repeat sample that is positive for total coliforms. The proposed methods for the detection of E. coli are based on beta-glucuronidase activity, using the fluorogenic substrate 4-methylumbelliferyl beta-D-glucuronide (MUG). This study was conducted to determine whether beta-glucuronidase negative E. coli were present in significant numbers in environmental waters. Two hundred and forty E. coli cultures were isolated from 12 water samples collected from different environmental sources. beta-glucuronidase activity was determined using lauryl tryptose broth with MUG, EC broth with MUG, and the Autoanalysis Colilert (AC) procedure. The isolates were also evaluated by the standard EC broth gas fermentation method for fecal coliforms. The results confirm that assaying for the enzyme beta-glucuronidase utilizing the MUG substrate is an accurate method for the detection of E. coli in environmental waters.  相似文献   

4.
Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n=43 plants), with mean densities (log CFU mL-1) of 1.28+/-0.23 and 1.97+/-0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 degrees C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.  相似文献   

5.
A total of 460 water samples were randomly drawn from the potable water supply sources of rural communities in three counties of South Carolina. About 10% of the population, not incorporated in municipalities, was sampled. The samples were tested for total coliforms, Escherichia coli, and fecal streptococci. Significant levels of these pollution indicator organisms were detected in almost all the water supplies. Total coliforms were the most common, and only 7.5% of the water supplies were uncontaminated. E. coli, considered a reliable indicator of recent and dangerous pollution, was observed in 43% of the water supplies. Statistical analyses indicated that the bacterial populations, especially E. coli, were associated with the supply source depth and its distance from the septic tank. Total coliform counts were also weakly correlated to the pH of the water.  相似文献   

6.
Magnitude of pollution indicator organisms in rural potable water.   总被引:3,自引:2,他引:1       下载免费PDF全文
A total of 460 water samples were randomly drawn from the potable water supply sources of rural communities in three counties of South Carolina. About 10% of the population, not incorporated in municipalities, was sampled. The samples were tested for total coliforms, Escherichia coli, and fecal streptococci. Significant levels of these pollution indicator organisms were detected in almost all the water supplies. Total coliforms were the most common, and only 7.5% of the water supplies were uncontaminated. E. coli, considered a reliable indicator of recent and dangerous pollution, was observed in 43% of the water supplies. Statistical analyses indicated that the bacterial populations, especially E. coli, were associated with the supply source depth and its distance from the septic tank. Total coliform counts were also weakly correlated to the pH of the water.  相似文献   

7.
Feedlot cattle slaughtered at a large abattoir in northern Italy during 2002 were examined for intestinal carriage and carcass contamination with Escherichia coli O157:H7. Carcass samples were taken following the excision method described in the Decision 471/2001/EC, and fecal material was taken from the colon of the calves after evisceration. Bacteria were isolated and identified according to the MFLP-80 and MFLP-90 procedures (Food Directorate's Health Canada's). Eighty-eight non-sorbitol-fermenting E. coli O157:H7 isolates were obtained from 12 of the 45 calves examined. In particular, E. coli O157:H7 isolates were found in 11 (24%) fecal and five (11%) carcass samples. PCR analysis showed that all 11 fecal samples and five carcass samples carried eae-gamma1-positive E. coli O157:H7 isolates. In addition, genes encoding Shigatoxins were detected in O157:H7 isolates from nine and two of those 11 fecal and five carcasses, respectively. A representative group of 32 E. coli O157:H7 isolates was analyzed by phage typing and DNA macrorestriction fragment analysis (PFGE). Five phage types (PT8, PT32v, PT32, PT54, and PT not typable) and seven (I-VII) distinct restriction patterns of similarity >85% were detected. Up to three different O157:H7 strains in an individual fecal sample and up to four from the same animal could be isolated. These findings provide evidence of the epidemiological importance of subtyping more than one isolate from the same sample. Phage typing together with PFGE proved to be very useful tools to detect cross-contamination among carcasses and should therefore be included in HACCP programs at abattoirs. The results showed that the same PFGE-phage type E. coli O157:H7 profile was detected in the fecal and carcass samples from an animal, and also in two more carcasses corresponding to two animals slaughtered the same day.  相似文献   

8.
The localization of fecal input sites is important for water quality management. For this purpose, we have developed a new approach based on a three-step procedure, including a preparatory phase, the screening of multiresistant bacteria using selective agar plates, and a typing phase where selected Escherichia coli isolates are characterized by antibiotic resistance profiles and molecular fingerprinting techniques (pulsed-field gel electrophoresis [PFGE]). These two well-known source tracking methods were combined in order to reduce cost and effort. This approach was successfully applied under field conditions in a study area located in the north-western part of Switzerland. E. coli isolates from spring water and surface water samples collected in this area were screened with selective agar plates. In this way, 21 different groups, each consisting of strains with the same pattern of antibiotic resistance, were found. Of these, four groups were further analyzed using PFGE. Strains with identical PFGE profiles were detected repeatedly, demonstrating the suitability of this method for the localization of fecal input sites over an extended period of time. Identical PFGE patterns of strains detected in water from two different springs were also found in the stream flowing through the study area. These results demonstrated the applicability of the new approach for the examination of incidents of fecal contamination in drinking water. The advantages of the described approach over genotyping methods currently being used to identify sources of fecal contaminants are a reduction in time, costs, and the effort required. Identical isolates could be identified without the construction of large libraries.  相似文献   

9.
Genetic diversity, isolation frequency, and persistence were determined for Escherichia coli O157 strains from range cattle production environments. Over the 11-month study, analysis of 9,122 cattle fecal samples, 4,083 water source samples, and 521 wildlife fecal samples resulted in 263 isolates from 107 samples presumptively considered E. coli O157 as determined by culture and latex agglutination. Most isolates (90.1%) were confirmed to be E. coli O157 by PCR detection of intimin and Shiga toxin genes. Pulsed-field gel electrophoresis (PFGE) of XbaI-digested preparations revealed 79 unique patterns (XbaI-PFGE subtypes) from 235 typeable isolates confirmed to be E. coli O157. By analyzing up to three isolates per positive sample, we detected an average of 1.80 XbaI-PFGE subtypes per sample. Most XbaI-PFGE subtypes (54 subtypes) were identified only once, yet the seven most frequently isolated subtypes represented over one-half of the E. coli O157 isolates (124 of 235 isolates). Recurring XbaI-PFGE subtypes were recovered from samples on up to 10 sampling occasions and up to 10 months apart. Seven XbaI-PFGE subtypes were isolated from both cattle feces and water sources, and one of these also was isolated from the feces of a wild opossum (Didelphis sp.). The number of XbaI-PFGE subtypes, the variable frequency and persistence of subtypes, and the presence of identical subtypes in cattle feces, free-flowing water sources, and wildlife feces indicate that the complex molecular epidemiology of E. coli O157 previously described for confined cattle operations is also evident in extensively managed range cattle environments.  相似文献   

10.
Escherichia coli was isolated from wild and captive Japanese macaques (Macaca fuscata) to investigate the risk of zoonotic infections and the prevalence of antimicrobial-resistant Escherichia coli in the wild macaque population in Shimokita Peninsula, a rural area of Japan. We collected 265 fresh fecal samples from wild macaques and 20 samples from captive macaques in 2005 and 2006 for E. coli isolation. The predominant isolates were characterized by serotyping, virulence gene profiling, plasmid profiling, pulsed-field gel electrophoresis (PFGE), and microbial sensitivity tests. In total, 248 E. coli strains were isolated from 159 fecal samples from wild macaques, and 42 E. coli were isolated from 17 samples from captive macaques. None of the virulence genes eae, stx, elt, and est were detected in any of the isolates. The relatedness between wild- and captive-derived isolates was low by serotyping, PFGE, and plasmid profiling. Serotypes O8:H6, O8:H34, O8:H42, O8:HUT, O103:H27, O103:HNM, and OUT:H27 were found in wild macaque feces; serotypes O157:H42 and O119:H21 were recovered from captive macaques. O-and H-serotypes of the 26 isolates were not typed by commercial typing antisera and were named OUT and HUT, respectively. Twenty-eight isolates had no flagellar antigen, and their H-serotypes were named HNM. Similarity of PFGE patterns between wild-derived isolates and captive-derived isolates was <70%. No plasmid profile was shared between wild-derived and captive-derived isolates. The prevalence of antimicrobial-resistant E. coli was 6.5% (n=62) in wild macaques, and these isolates were resistant to cephalothin. We conclude that wild Japanese macaques in Shimokita Peninsula were unlikely to act as a reservoir of pathogenic E. coli for humans and that antimicrobial-resistant E. coli in wild macaques may be derived from humans.  相似文献   

11.
Samples collected from water accumulated in leaf axilae of bromeliads (epiphytic flora) in a tropical rain forest were found to harbor fecal coliforms. Random identification of fecal coliform-positive isolates demonstrated the presence of Escherichia coli. This bacterium was also isolated from bromeliad leaf surfaces. These data indicate that E. coli may be part of the phyllosphere microflora and not simply a transient bacterium of this habitat. The isolation of fecal coliforms from these sites was unexpected and raises questions as to the validity of using fecal coliforms as indicators of biological water quality in the tropics.  相似文献   

12.
Escherichia coli isolates were obtained from common host sources of fecal pollution and characterized by using repetitive extragenic palindromic (REP) PCR fingerprinting. The genetic relationship of strains within each host group was assessed as was the relationship of strains among different host groups. Multiple isolates from a single host animal (gull, human, or dog) were found to be identical; however, in some of the animals, additional strains occurred at a lower frequency. REP PCR fingerprint patterns of isolates from sewage (n = 180), gulls (n = 133), and dairy cattle (n = 121) were diverse; within a host group, pairwise comparison similarity indices ranged from 98% to as low as 15%. A composite dendrogram of E. coli fingerprint patterns did not cluster the isolates into distinct host groups but rather produced numerous subclusters (approximately >80% similarity scores calculated with the cosine coefficient) that were nearly exclusive for a host group. Approximately 65% of the isolates analyzed were arranged into host-specific groups. Comparable results were obtained by using enterobacterial repetitive intergenic consensus PCR and pulsed-field gel electrophoresis (PFGE), where PFGE gave a higher differentiation of closely related strains than both PCR techniques. These results demonstrate that environmental studies with genetic comparisons to detect sources of E. coli contamination will require extensive isolation of strains to encompass E. coli strain diversity found in host sources of contamination. These findings will assist in the development of approaches to determine sources of fecal pollution, an effort important for protecting water resources and public health.  相似文献   

13.
Isolation of fecal coliforms from pristine sites in a tropical rain forest   总被引:1,自引:0,他引:1  
Samples collected from water accumulated in leaf axilae of bromeliads (epiphytic flora) in a tropical rain forest were found to harbor fecal coliforms. Random identification of fecal coliform-positive isolates demonstrated the presence of Escherichia coli. This bacterium was also isolated from bromeliad leaf surfaces. These data indicate that E. coli may be part of the phyllosphere microflora and not simply a transient bacterium of this habitat. The isolation of fecal coliforms from these sites was unexpected and raises questions as to the validity of using fecal coliforms as indicators of biological water quality in the tropics.  相似文献   

14.
The relationship of fecal coliforms, Escherichia coli, and Salmonella spp. was examined in freshly harvested and stored shellfish. In 16 of 40 freshly collected oyster samples, fecal coliform levels were above the recommended wholesale level suggested by the National Shellfish Sanitation Program (less than or equal to 230/100 g), and Salmonella spp. were present in three of these samples. Salmonella spp. were not, however, present in any sample containing less than 230 fecal coliforms per 100 g. Analysis of the data suggests that low fecal coliform levels in both fresh and stored oysters are good indicators of the absence of Salmonella spp., but that high levels of fecal coliforms are somewhat limited in predicting the presence of Salmonella spp. E. coli levels correlated very strongly with fecal coliform levels in both fresh and stored oysters and clams, suggesting that there is no advantage in replacing fecal coliforms with E. coli as an indicator of shellfish quality.  相似文献   

15.
The relationship of fecal coliforms, Escherichia coli, and Salmonella spp. was examined in freshly harvested and stored shellfish. In 16 of 40 freshly collected oyster samples, fecal coliform levels were above the recommended wholesale level suggested by the National Shellfish Sanitation Program (less than or equal to 230/100 g), and Salmonella spp. were present in three of these samples. Salmonella spp. were not, however, present in any sample containing less than 230 fecal coliforms per 100 g. Analysis of the data suggests that low fecal coliform levels in both fresh and stored oysters are good indicators of the absence of Salmonella spp., but that high levels of fecal coliforms are somewhat limited in predicting the presence of Salmonella spp. E. coli levels correlated very strongly with fecal coliform levels in both fresh and stored oysters and clams, suggesting that there is no advantage in replacing fecal coliforms with E. coli as an indicator of shellfish quality.  相似文献   

16.
Application of an analysis of correspondence to the biochemical characteristics of total and fecal coliforms isolated in the Ivory Coast permitted us to separate two small clusters of isolates different from the main clusters, which included isolates from human and animal feces. The isolates grouped in the small clusters were from water samples. An analysis of the biochemical characteristics which permitted the segregation of the "water-specific" isolates from the main clusters indicates that water-specific total coliforms were citrate positive, indole negative, and amygdaline positive. Water-specific fecal coliforms were either citrate positive, indole negative, amygdaline positive, and inositol negative or indole negative, amygdaline positive, and inositol positive. Any isolates not fitting the above patterns could be considered of fecal origin. If this observation is confirmed under temperate climates and for a greater number of isolates, these simple tests could be used to confirm the fecal origin of coliforms.  相似文献   

17.
bla(CTX-M) beta-lactamases confer resistance to critically important cephalosporin drugs. Recovered from both hospital- and community-acquired infections, bla(CTX-M) was first reported in U.S. livestock in 2010. It has been hypothesized that veterinary use of cephalosporins in livestock populations may lead to the dissemination of beta-lactamase-encoding genes. Therefore, our objectives were to estimate the frequency and distribution of coliform bacteria harboring bla(CTX-M) in the fecal flora of Ohio dairy cattle populations. In addition, we characterized the CTX-M alleles carried by the isolates, their plasmidic contexts, and the genetic diversity of the bacterial isolates themselves. We also evaluated the association between ceftiofur use and the likelihood of recovering cephalosporinase-producing bacteria. Thirty fresh fecal samples and owner-reported ceftiofur use data were collected from each of 25 Ohio dairy farms. Fecal samples (n = 747) yielded 70 bla(CTX-M)-positive Escherichia coli isolates from 5/25 herds, 715 bla(CMY-2) E. coli isolates from 25/25 herds, and 274 Salmonella spp. from 20/25 herds. The within-herd prevalence among bla(CTX-M)-positive herds ranged from 3.3 to 100% of samples. Multiple pulsed-field gel electrophoresis (PFGE) patterns, plasmid replicon types, and CTX-M genes were detected. Plasmids with CTX-M-1, -15, and -14 alleles were clonal by restriction fragment length polymorphism (RFLP) within herds, and specific plasmid incompatibility group markers were consistently associated with each bla(CTX-M) allele. PFGE of total bacterial DNA showed similar within-herd clustering, with the exception of one herd, which revealed at least 6 different PFGE signatures. We were unable to detect an association between owner-reported ceftiofur use and the probability of recovering E. coli carrying bla(CTX-M) or bla(CMY-2).  相似文献   

18.
Application of an analysis of correspondence to the biochemical characteristics of total and fecal coliforms isolated in the Ivory Coast permitted us to separate two small clusters of isolates different from the main clusters, which included isolates from human and animal feces. The isolates grouped in the small clusters were from water samples. An analysis of the biochemical characteristics which permitted the segregation of the "water-specific" isolates from the main clusters indicates that water-specific total coliforms were citrate positive, indole negative, and amygdaline positive. Water-specific fecal coliforms were either citrate positive, indole negative, amygdaline positive, and inositol negative or indole negative, amygdaline positive, and inositol positive. Any isolates not fitting the above patterns could be considered of fecal origin. If this observation is confirmed under temperate climates and for a greater number of isolates, these simple tests could be used to confirm the fecal origin of coliforms.  相似文献   

19.
Coliforms, fecal coliforms, and Salmonella were isolated from the Red River, Manitoba, Canada, and identified. These organisms were then examined for resistance to 12 antibiotics. Some fecal coliforms were resistant to all 12 antibiotics, and 18% of the Salmonella isolates were resistant to one or more antibiotics. A total of 52.9% of the fecal coliforms resistant to three or more antibiotics were able to transfer single or multiple resistance (R) determinants to the Salmonella recipient, and 40.7% could transfer R determinants to the Escherichia coli recipient. Of the resistant Salmonella, 57% transferred one or two determinants to the Salmonella recipient, and 39% transferred one or two determinants to the E. coli recipient. It was calculated that populations of fecal coliforms containing R factors were as high as 1,400 per 100 ml and that an accidental intake of a few milliliters of water could lead to transient or permanent colonization of the digestive tract. Consideration of data on bacteria with R factors should be made in future water quality deliberations and in discharge regulations.  相似文献   

20.
G W Chang  J Brill    R Lum 《Applied microbiology》1989,55(2):335-339
Convenient assays and reports that almost all clinical isolates of Escherichia coli produce beta-D-glucuronidase (GUR) have led to great interest in the use of the enzyme for the rapid detection of the bacterium in water, food, and environmental samples. In these materials, E. coli serves as an indicator of possible fecal contamination. Therefore, it was crucial to examine the proportion of GUR-negative E. coli in human fecal samples. The bacterium was isolated from 35 samples, and a mean of 34% and a median of 15% were found to be GUR negative in lauryl sulfate tryptose broth with 4-methylumbelliferyl-beta-D-glucuronide. E. coli from three samples were temperature dependent for GUR production: very weakly positive at 37 degrees C but strongly positive at 44.5 degrees C. These results remind us of differences between fecal and clinical E. coli populations, of diversity in GUR regulation and expression in natural populations of E. coli, and of the need for caution in using GUR for the detection of fecal E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号