首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfation is a posttranslational modification of proteins which occurs on either the tyrosine residues or the carbohydrate moieties of some glycoproteins. In the case of secretory proteins, sulfation has been hypothesized to act as a signal for export from the cell. We have shown that the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein precursor (gp160) as well as the surface (gp120) and transmembrane (gp41) subunits can be specifically labelled with 35SO42-. Sulfated HIV-1 envelope glycoproteins were identified in H9 cells infected with the IIIB isolate of HIV-1 and in the cell lysates and culture media of cells infected with vaccinia virus recombinants expressing a full-length or truncated, secreted form of the HIV-1 gp160 gene. N-glycosidase F digestion of 35SO4(2-)-labelled envelope proteins removed virtually all radiolabel from gp160, gp120, and gp41, indicating that sulfate was linked to the carbohydrate chains of the glycoprotein. The 35SO42-label was at least partially resistant to endoglycosidase H digestion, indicating that some sulfate was linked to complex carbohydrates. Brefeldin A, a compound that inhibits the endoplasmic reticulum to Golgi transport of glycoproteins, was found to inhibit the sulfation of the envelope glycoproteins. Envelope glycoproteins synthesized in cells treated with chlorate failed to incorporate 35SO42-. However, HIV glycoproteins were still secreted from cells in the presence of chlorate, indicating that sulfation is not a requirement for secretion of envelope glycoproteins. Sulfation of HIV-2 and simian immunodeficiency virus envelope glycoproteins has also been demonstrated by using vaccinia virus-based expression systems. Sulfation is a major determinant of negative charge and could play a role in biological functions and antigenic properties of HIV glycoproteins.  相似文献   

2.
Three closely related molecular human immunodeficiency virus type 1 (HIV-1) clones, with differential neutralization phenotypes, were generated by cloning of an NcoI-BamHI envelope (env) gene fragment (HXB2R nucleotide positions 5221 to 8021) into the full-length HXB2 molecular clone of HIV-1 IIIB. These env gene fragments, containing the complete gp120 coding region and a major part of gp41, were obtained from three different biological clones derived from a chimpanzee-passaged HIV-1 IIIB isolate. Two of the viruses thus obtained (4.4 and 5.1) were strongly resistant to neutralization by infection-induced chimpanzee and human polyclonal antibodies and by HIV-1 IIIB V3-specific monoclonal antibodies and weakly resistant to soluble CD4 and a CD4-binding-site-specific monoclonal antibody. The third virus (6.8) was sensitive to neutralization by the same reagents. The V3 coding sequence and the gp120 amino acid residues important for the discontinuous neutralization epitope overlapping the CD4-binding site were completely conserved among the clones. However, the neutralization-resistant clones 4.4 and 5.1 differed from neutralization-sensitive clone 6.8 by two mutations in gp41. Exchange experiments confirmed that the 3' end of clone 6.8 (nucleotides 6806 to 8021; amino acids 346 to 752) conferred a neutralization-sensitive phenotype to both of the neutralization-resistant clones 4.4 and 5.1. From our study, we conclude that mutations in the extracellular portion of gp41 may affect neutralization sensitivity to gp120 antibodies.  相似文献   

3.
Repeated immunizations of goats, horses, or chimpanzees with envelope glycoprotein gp120 isolated from human immunodeficiency virus type 1 (HIV-1) resulted in type-specific neutralizing-antibody responses, which began to decay approximately 20 days following the administration of antigen. This was true repeatedly for serum samples from animals hyperimmunized with gp120s from either the HTLV-IIIB (IIIB) or the envelope-divergent HTLV-IIIRF (RF) HIV-1 isolates. Animals previously immunized with the IIIB gp120 were then inoculated with purified RF gp120. The first response in these animals was an anamnestic resurgence of neutralizing antibody to IIIB without detectable neutralizing antibody for RF. However, with later RF gp120 boosts, the IIIB neutralizing-antibody titers fell and an RF type-specific neutralizing-antibody response developed. When assessed with other HIV-1 variants, no group-specific neutralizing antibody was seen in any of the vaccination protocols evaluated. These results will pose real obstacles in the development of an effective vaccine for HIV.  相似文献   

4.
Emergence in two chimpanzees of human immunodeficiency virus type 1 (HIV-1) IIIB variants resistant to neutralization by the preexisting antibody is described. Viruses isolated from the HIV-1 IIIB gp120-vaccinated and -challenged animal were more resistant to neutralization by the chimpanzee's own serum than viruses isolated from the naive infected animal, indicating immune pressure as the selective mechanism. However, all reisolated viruses were 16- to 256-fold more neutralization resistant than the inoculum virus to antibodies binding to the third variable domain (V3) of the HIV-1 external envelope. Early chimpanzee serum samples that neutralized the inoculum strain but not the reisolated viruses were found to bind an HIV-1 IIIB common nonapeptide (IQRGPGRAF) derived from the gp120 isolate-specific V3 domain shown to induce isolate-specific neutralization in other animals. Amplification of the V3 coding sequence by polymerase chain reaction and subsequent sequence analysis of the neutralization-resistant variants obtained from in vivo-infected animals indicated that early resistance to neutralization by an HIV-1 IIIB monoclonal antibody (0.5 beta) was conferred by changes outside the direct binding site for the selective neutralizing antibody. The reisolated neutralization-resistant isolates consisted of the lower-replication-competent virus subpopulations of the HIV-1 IIIB stock, as confirmed by biological and sequence analyses. In vitro passage of the HIV-1 IIIB stock through chimpanzee and human peripheral blood mononuclear cell cultures void of HIV-specific antibody resulted in homogenic amplification of the more-replication-competent subpopulation preexisting in the original viral stock, suggesting a role for the immune system in suppressing the more-replication-competent viruses.  相似文献   

5.
Vaccines prepared from the envelope glycoprotein, gp120, of the common laboratory isolate of human immunodeficiency virus type 1 (HIV-1) (IIIB/LAV-1) elicit antibodies that neutralize the homologous virus but show little if any cross-neutralizing activity. This may be because the principal neutralizing determinant (PND) of gp120 is highly unusual in the IIIB/LAV-1 strain and is not representative of those found in the majority of field isolates. We have now examined the immunogenicity of recombinant gp120 prepared from the MN strain of HIV-1 (MN-rgp120), whose PND is thought to be representative of approximately 60% of the isolates in North America. Our results show that MN-rgp120 is a potent immunogen and elicits anti-gp120 titers comparable to those found in HIV-1-infected individuals. While both MN-rgp120 and IIIB-rgp120 induced antibodies able to block gp120 binding to CD4, strain-specific and type-common blocking antibodies were detected. Finally, antibodies to MN-rgp120 but not to IIIB-rgp120 were effective in neutralizing a broad range of laboratory and clinical isolates of HIV-1. These studies demonstrate that susceptibility or resistance to neutralization by antibodies to gp120 correlates with the PND sequence and suggest that the problem of antigenic variation may not be insurmountable in the development of an effective AIDS vaccine.  相似文献   

6.
A Achour  F Bex  P Hermans  A Burny    D Zagury 《Journal of virology》1996,70(10):6741-6750
Cytotoxic T lymphocytes (CTL) may be important to prevent cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), the agent responsible for AIDS. In this study, we investigated the epitope specificity of CTLs induced in individuals immunized against the virus envelope glycoprotein gp160. The determinant of HIV-1 gp160 for the stimulation of CTL is located in a region of high sequence variability among HIV-1 isolates, the so-called V3 loop P18. Using a panel of P18 peptides, we compared the CTL specificities of cells from two individuals immunized with vaccinia virus recombinants expressing the envelope glycoproteins from two different strains of HIV-1, IIIB and SIMI. For this purpose, CTLs specific for the IIIB P18 peptide (RIQRGPGRAFVTIGK) were compared with CTLs for the site from the SIMI isolate (TLHMGPKRAFYATGD). The results indicate that in contrast to CD8+ CTLs induced by the glycoprotein from strain IIIB, CD8+ CTLs induced by strain SIMI strongly cross-reacted with targets presenting P18 peptides as well as envelope proteins from the divergent MN and RF isolates but failed to cross-react with targets that presented the IIIB peptide. These data have implications for the design of an HIV vaccine.  相似文献   

7.
HIV-1 external envelope glycoprotein gp120 inhibits adenosine deaminase (ADA) binding to its cell surface receptor in lymphocytes, CD26, by a mechanism that does not require the gp120-CD4 interaction. To further characterize this mechanism, we studied ADA binding to murine clones stably expressing human CD26 and/or human CD4, and transiently expressing human CXCR4. In this heterologous model, we show that both recombinant gp120 and viral particles from the X4 HIV-1 isolate IIIB inhibited the binding of ADA to wild-type or catalytically inactive forms of CD26. In cells lacking human CXCR4 expression, this gp120-mediated inhibition of ADA binding to human CD26 was completely dependent on the expression of human CD4. In contrast, when cells were transfected with human CXCR4 the inhibitory effect of gp120 was significantly enhanced and was not blocked by anti-CD4 antibodies. These data suggest that the interaction of gp120 with CD4 or CXCR4 is required for efficient inhibition of ADA binding to CD26, although in the presence of CXCR4 the interaction of gp120 with CD4 may be dispensable.  相似文献   

8.
The specific cellular immune response toward envelope and core proteins of human immunodeficiency virus-1 (HIV-1) was investigated in gibbon apes chronically infected with the HTLV-IIIB isolate. After in vitro stimulation of PBMC from infected and control animals with HIV-1 Ag, DNA synthesis, IL-2R expression and IL-2 release were assayed. Cells from infected gibbon apes demonstrated a group-specific response toward whole virus preparations from three divergent HIV-1 isolates (HTLV-IIIB, HTLV-IIIRF, HTLV-IIIMN). Consistent responses were also detected against purified HIV-1 Ag, i.e., native gp120 envelope glycoprotein, recombinant gp160 glycoprotein, a synthetic peptide (peptide 7) representing a highly conserved region of gp120, and purified native core protein p24. In addition, lymphocytes from infected gibbon apes displayed a specific, MHC-restricted, cytotoxic activity against autologous cells expressing HIV-1 envelope or gag proteins. The specific T cell reactivity toward HIV-1 proteins observed in infected gibbons contrasts with findings in HIV-1 infected humans, and may help to explain the apparent discrepancy in the natural history of the infection between the two species.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) isolates exhibit extensive sequence variation, particularly in the gp120 subunit of the envelope glycoprotein, and the degree of this variation has raised questions as to whether conserved regions of the HIV-1 envelope can be recognized by the host immune response. A CD8+ cytotoxic T-lymphocyte (CTL) clone specific for the HIV-1 envelope was derived by culturing peripheral blood mononuclear cells from an HIV-1 seropositive subject in the presence of a CD3-specific monoclonal antibody, interleukin-2, and irradiated allogeneic peripheral blood mononuclear cells. Lysis of target cells was restricted by an HLA-C molecule, Cw4, which has not been previously shown to present viral antigen to CTL. Mapping of the specificity of this CTL clone by using synthetic HIV-1 peptides localized the epitope to an 8-amino-acid region of gp120 (amino acids 376 to 383) which is conserved among approximately 90% of sequenced viral isolates. Examination of the recognition of variant peptides by this CTL clone demonstrated that a single, nonconservative amino acid substitution within the 8-amino-acid minimal epitope could abrogate lysis of targets incubated with the variant peptide. The identification of a CTL epitope in a highly conserved region of gp120 documents the ability of cellular immune responses of infected persons to respond to relatively invariant portions of this highly variable envelope glycoprotein. However, the ability of even a single-amino-acid change in gp120 to abolish lysis by CTL supports the hypothesis that sequence variation in HIV-1 may serve as a mechanism of immune escape. In addition, the identification of an HLA-C molecule presenting viral antigen to CTL supports a functional role for these molecules.  相似文献   

10.
The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell.  相似文献   

11.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

12.
Protein-protein interaction surfaces can exhibit structural plasticity, a mechanism whereby an interface adapts to mutations as binding partners coevolve. The HIV-1 envelope glycoprotein gp120-gp41 complex, which is responsible for receptor attachment and membrane fusion, represents an extreme example of a coevolving complex as up to 35% amino acid sequence divergence has been observed in these proteins among HIV-1 isolates. In this study, the function of conserved gp120 contact residues, Leu593, Trp596, Gly597, Lys601, and Trp610 within the disulfide-bonded region of gp41, was examined in envelope glycoproteins derived from diverse HIV-1 isolates. We found that the gp120-gp41 association function of the disulfide-bonded region is conserved. However, the contribution of individual residues to gp41 folding and/or stability, gp120-gp41 association, membrane fusion function, and viral entry varied from isolate to isolate. In gp120-gp41 derived from the dual-tropic isolate, HIV-189.6, the importance of Trp596 for fusion function was dependent on the chemokine receptor utilized as a fusion cofactor. Thus, the engagement of alternative chemokine receptors may evoke distinct fusion-activation signals involving the site of gp120-gp41 association. An examination of chimeric glycoproteins revealed that the isolate-specific functional contributions of particular gp120-contact residues are influenced by the sequence of gp120 hypervariable regions 1, 2, and 3. These data indicate that the gp120-gp41 association site is structurally and functionally adaptable, perhaps to maintain a functional glycoprotein complex in a setting of host selective pressures driving the rapid coevolution of gp120 and gp41.  相似文献   

13.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein epitopes recognized by neutralizing antibodies from monkeys recently infected by molecularly cloned simian-human immunodeficiency virus (SHIV) variants. The early neutralizing antibody response in each infected animal was directed mainly against a single epitope. This primary neutralizing epitope, however, differed among individual monkeys infected by identical viruses. Two such neutralization epitopes were determined by sequences in the V2 and V3 loops of the gp120 envelope glycoprotein, while a third neutralization epitope, apparently discontinuous, was determined by both V2 and V3 sequences. These results indicate that the early neutralizing antibody response in SHIV-infected monkeys is monospecific and directed against epitopes composed of the gp120 V2 and V3 variable loops.  相似文献   

14.
Analysis of viral replication and pathogenicity after in vivo selection of human immunodeficiency virus type 1 (HIV-1) attenuated in vitro will help to define the functions involved in replication and pathogenesis in vivo. Using the SCID-hu Thy/Liv mouse and human fetal thymus organ culture as in vivo models, we previously defined HIV-1 env determinants (HXB2/LW) which were reverted for replication in vivo (L. Su et al., Virology 227:46-52, 1997). In this study, we examined the replication of four highly related HIV-1 clones directly derived from Lai/IIIB or after selection in vivo to investigate the envelope gp120 determinants associated with replication in macrophages and in the thymus models in vivo. The LW/C clone derived from the IIIB-infected laboratory worker and HXB2/LW both efficiently infected monocyte-derived macrophages (MDM) and the human thymus. Although the laboratory worker (LW) isolates showed altered tropism from IIIB, they still predominantly used CXCR4 as coreceptors for infecting peripheral blood mononuclear cells, macrophages, and the thymus. Interestingly, a single amino acid mutation in the V3 loop associated with resistance to neutralizing antibodies was also essential for the replication activity of the LW virus in the thymus models but not for its activity in infecting MDM. The LW virions were equally sensitive to a CXCR4 antagonist. We further demonstrated that the LW HIV-1 isolate selected in vivo produced more infectious viral particles that contained higher levels of the Env protein gp120. Thus, selection of the laboratory-attenuated Lai/IIIB isolate in vivo leads to altered tropism but not coreceptor usage of the virus. The acquired replication activity in vivo is correlated with an early A-to-T mutation in the V3 loop and increased virion association of HIV-1 Env gp120, but it is genetically separable from the acquired replication activity in macrophages.  相似文献   

15.
Human immunodeficiency virus (HIV-1) envelope glycoprotein subunits, such as the gp120 exterior glycoprotein, typically elicit antibodies that neutralize T-cell-line-adapted (TCLA), but not primary, clinical isolates of HIV-1. Here we compare the immunogenicity of gp120 and soluble stabilized trimers, which were designed to resemble the functional envelope glycoprotein oligomers of primary and TCLA HIV-1 strains. For both primary and TCLA virus proteins, soluble stabilized trimers generated neutralizing antibody responses more efficiently than gp120 did. Trimers derived from a primary isolate elicited antibodies that neutralized primary and TCLA HIV-1 strains. By contrast, trimers derived from a TCLA isolate generated antibodies that neutralized only the homologous TCLA virus. Thus, soluble stabilized envelope glycoprotein trimers derived from primary HIV-1 isolates represent defined immunogens capable of eliciting neutralizing antibodies that are active against clinically relevant HIV-1 strains.  相似文献   

16.
Primary isolates of human immunodeficiency virus type 1 (HIV-1) are much less sensitive to neutralization by soluble CD4 (sCD4) and sCD4-immunoglobulin (Ig) chimeras (CD4-IgG) than are HIV-1 strains adapted to growth in cell culture. We demonstrated that there are significant reductions (10- to 30-fold) in the binding of sCD4 and CD4-IgG to intact virions of five primary isolates compared with sCD4-sensitive, cell culture-adapted isolates RF and IIIB. However, soluble envelope glycoproteins (gp120) derived from the primary isolate virions, directly by detergent solubilization or indirectly by recombinant DNA technology, differed in affinity from RF and IIIB gp120 by only one- to threefold. The reduced binding of sCD4 to these primary isolate virions must therefore be a consequence of the tertiary or quaternary structure of the envelope glycoproteins in their native, oligomeric form on the viral surface. In addition, the rate and extent of sCD4-induced gp120 shedding from these primary isolates was lower than that from RF. We suggest that reduced sCD4 binding and increased gp120 retention together account for the relative resistance of these primary isolates to neutralization by sCD4 and CD4-IgG and that virions of different HIV-1 isolates vary both in the mechanism of sCD4 binding and in subsequent conformational changes in their envelope glycoproteins.  相似文献   

17.
gp120 is the envelope glycoprotein found on the surface of human immunodeficiency virus type 1 (HIV-1), and it binds to human cell surface CD4 receptors to initiate the HIV-1 infection process. It is now well-established that synthetic peptides from the V3 region on gp120 elicit antibodies that block HIV-1 infection and HIV-1-mediated cell fusion. Here we show that synthetic peptides derived from similar V3 regions of several isolates of HIV-1 bind [3H]heparin, and we also demonstrate that [3H]heparin binds to recombinant gp120 IIIB. The binding could be blocked by unlabeled heparin, dextran sulfate, and by a highly anionic benzylated synthetic peptide derived from human CD4 (amino acids 81-92). The nonbenzylated peptides from the same region were considerably less active. Unlabeled heparin, dextran sulfate, and the CD4-derived peptides were able to compete with the binding of soluble gp120 to immobilized antibodies against fragments of the V3 from isolate IIIB, but they had no effect on the binding of gp120 to anti-peptide antibodies targeted against another unrelated region of gp120. Biotin conjugated to the benzylated CD4-peptide bound to gp120 and was blocked from this binding by anti-V3 antibodies. These results indicate that the three materials that have been demonstrated by others to block HIV-1 infection in vitro, sulfated polysaccharides, certain CD4-derived synthetic peptides, and anti-V3 antibodies, may be acting through a common mechanism that includes binding to the V3 region of gp120 on HIV-1.  相似文献   

18.
In previous studies, we have used antisera raised to envelope (env)-gene-encoded synthetic peptides to identify a region of (HIV) glycoprotein (gp) 120 env protein designated SP10 that contains a type-specific neutralizing determinant. To develop a polyvalent, synthetic peptide inoculum that can evoke both neutralizing antibodies and T cell proliferative responses to more than one HIV isolate, synthetic peptides containing type-specific neutralizing determinants of gp120 from HIV isolates HTLV-IIIB (IIIB), HTLV-IIIMN (MN) and HTLV-IIIRF (RF) were coupled to a 16 amino acid T cell epitope (T1) of HIV-IIIB gp120 and used to immunize goats. Goat antisera to each T1-SP10 peptide derived from the SP10 region of gp120 of IIIB, MN, and RF neutralized HIV isolates IIIB, MN and RF in a type-specific manner. Moreover, peripheral blood T cells from immunized goats also proliferated in a type-specific manner to peptides derived from gp120 of IIIB, MN, and RF. When combined in a trivalent inoculum, T1-SP10 peptides from HIV-1 isolates IIIB, MN, and RF evoked a high titered neutralizing antibody response to isolates IIIB, MN, and RF in goats and as well induced immune T cells to undergo blast transformation in the presence of peptides derived from gp120 of all three HIV isolates. The T1 portion of the T1-SP10 construct was shown to induce a B cell antibody response against determinants within the T1 peptide in addition to inducing T cell proliferative responses in immune goat T cells. Moreover, the SP10 portion of the T1-SP10 constructs not only induced B cell antibody production but also induced type-specific T cell proliferative responses localized to the C-terminal variable sequences of the SP10 peptides. Finally, the T1-SP10 peptide construct induced memory T cell proliferative responses to native gp120 env protein. Thus, combinations of homologous SP10 region synthetic peptides containing type-specific neutralizing determinants and T cell epitopes of HIV gp120 may be useful in man to elicit high titered neutralizing B cell responses and, as well, T cell responses to more than one HIV isolate.  相似文献   

19.
Mouse mAb reactive to the HIV-1 envelope glycoprotein precursor gp160 of the HTLVIII(B) isolate were characterized in radioimmunoprecipitation and immunoblot tests with the use of HTLVIII(B) isolate as Ag. The reactivities of these mAb were also measured in a capture enzyme immunoassay and in radioimmunoprecipitation assay by using gp160 and gp120 expressed as vaccinia recombinants. Striking differences in exposure of specific epitopes were noted between the gp120 component of the gp160 precursor and the fully processed gp120 in both tests. These conformational rearrangements affecting the gp120 moiety of the HIV-1 envelope glycoprotein might have important implications on its immunogenicity.  相似文献   

20.
Four glycoproteins with apparent molecular weights of 300,000, 140,000, 125,000, and 36,000 (gp300, gp140, gp125, and gp36) were detectable in human immunodeficiency virus type 2 (HIV-2)-infected cells. gp125 and gp36 are the external and transmembrane components, respectively, of the envelope glycoproteins of HIV-2 mature virions. gp300 and gp140 are only detectable in virus-infected cells. They have identical isoelectric points, suggesting that gp300 might be a dimeric form of the immature precursor, gp140. The purified gp300 can be dissociated in a slightly acidic buffer to give rise to monomers of 140,000 molecular weight. Such dissociated monomers and the purified gp140 showed identical patterns of polypeptides after partial proteolysis with Staphylococcus aureus V8 protease. Pulse-chase experiments indicated that gp300 is formed after synthesis of gp140 and before the detection of the mature external envelope glycoprotein, gp125. These results were confirmed by using various inhibitors of glycosylation and inhibitors of trimming enzymes. Dimer formation of the envelope glycoprotein precursor was also observed in cells infected with simian immunodeficiency virus (SIV), a virus closely related to HIV-2. On the other hand, the envelope glycoprotein precursor of HIV-1 did not form a dimer during its processing. Therefore, dimer formation seems to be a specific property of HIV-2 and SIV envelope gene expression. Such transient dimerization of the glycoprotein precursor might be required for its efficient transport to the Golgi apparatus and for its processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号