首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologous pairing and chromosome dynamics in meiosis and mitosis   总被引:2,自引:0,他引:2  
Pairing of homologous chromosomes is an essential feature of meiosis, acting to promote high levels of recombination and to ensure segregation of homologs. However, homologous pairing also occurs in somatic cells, most regularly in Dipterans such as Drosophila, but also to a lesser extent in other organisms, and it is not known how mitotic and meiotic pairing relate to each other. In this article, I summarize results of recent molecular studies of pairing in both mitosis and meiosis, focusing especially on studies using fluorescent in situ hybridization (FISH) and GFP-tagging of single loci, which have allowed investigators to assay the pairing status of chromosomes directly. These approaches have permitted the demonstration that pairing occurs throughout the cell cycle in mitotic cells in Drosophila, and that the transition from mitotic to meiotic pairing in spermatogenesis is accompanied by a dramatic increase in pairing frequency. Similar approaches in mammals, plants and fungi have established that with few exceptions, chromosomes enter meiosis unpaired and that chromosome movements involving the telomeric, and sometimes centromeric, regions often precede the onset of meiotic pairing. The possible roles of proteins involved in homologous recombination, synapsis and sister chromatid cohesion in homolog pairing are discussed with an emphasis on those for which mutant phenotypes have permitted an assessment of effects on homolog pairing. Finally, I consider the question of the distribution and identity of chromosomal pairing sites, using recent data to evaluate possible relationships between pairing sites and other chromosomal sites, such as centromeres, telomeres, promoters and heterochromatin. I cite evidence that may point to a relationship between matrix attachment sites and homologous pairing sites.  相似文献   

2.
Tsai JH  Yan R  McKee BD 《Chromosoma》2011,120(4):335-351
Drosophila males undergo meiosis without recombination or chiasmata but homologous chromosomes pair and disjoin regularly. The X–Y pair utilizes a specific repeated sequence within the heterochromatic ribosomal DNA blocks as a pairing site. No pairing sites have yet been identified for the autosomes. To search for such sites, we utilized probes targeting specific heterochromatic regions to assay heterochromatin pairing sequences and behavior in meiosis by fluorescence in situ hybridization (FISH). We found that the small fourth chromosome pairs at heterochromatic region 61 and associates with the X chromosome throughout prophase I. Homolog pairing of the fourth chromosome is disrupted when the homolog conjunction complex is perturbed by mutations in SNM or MNM. On the other hand, six tested heterochromatic regions of the major autosomes proved to be largely unpaired after early prophase I, suggesting that stable homolog pairing sites do not exist in heterochromatin of the major autosomes. Furthermore, FISH analysis revealed two distinct patterns of sister chromatid cohesion in heterochromatin: regions with stable cohesion and regions lacking cohesion. This suggests that meiotic sister chromatid cohesion is incomplete within heterochromatin and may occur at specific preferential sites.  相似文献   

3.
Blumenstiel JP  Fu R  Theurkauf WE  Hawley RS 《Genetics》2008,180(3):1355-1365
Homolog pairing is indispensable for the proper segregation of chromosomes in meiosis but the mechanism by which homologs uniquely pair with each other is poorly understood. In Drosophila, somatic chromosomes also undergo full homolog pairing by an unknown mechanism. It has been recently demonstrated that both insulator function and somatic long-distance interactions between Polycomb response elements (PREs) are stabilized by the RNAi machinery in Drosophila. This suggests the possibility that long-distance pairing interactions between homologs, either during meiosis or in the soma, may be stabilized by a similar mechanism. To test this hypothesis, we have characterized meiotic and early somatic chromosome pairing of homologous chromosomes in flies that are mutant for various components of the RNAi machinery. Despite the identification of a novel role for the piRNA machinery in meiotic progression and synaptonemal complex (SC) assembly, we have found that the components of the RNAi machinery that mediate long-distance chromosomal interactions are dispensable for homologous chromosome pairing. Thus, there appears to be at least two mechanisms that bring homologous sequences together within the nucleus: those that act between dispersed homologous sequences and those that act to align and pair homologous chromosomes.  相似文献   

4.
K. S. McKim  A. M. Howell    A. M. Rose 《Genetics》1988,120(4):987-1001
In the nematode Caenorhabditis elegans, recombination suppression in translocation heterozygotes is severe and extensive. We have examined the meiotic properties of two translocations involving chromosome I, szT1(I;X) and hT1(I;V). No recombination was observed in either of these translocation heterozygotes along the left (let-362-unc-13) 17 map units of chromosome I. Using half-translocations as free duplications, we mapped the breakpoints of szT1 and hT1. The boundaries of crossover suppression coincided with the physical breakpoints. We propose that DNA sequences at the right end of chromosome I facilitate pairing and recombination. We use the data from translocations of other chromosomes to map the location of pairing sites on four other chromosomes. hT1 and szT1 differed markedly in their effect on recombination adjacent to the crossover suppressed region. hT1 had no effect on recombination in the adjacent interval. In contrast, the 0.8 map unit interval immediately adjacent to the szT1(I;X) breakpoint on chromosome I increased to 2.5 map units in translocation heterozygotes. This increase occurs in a chromosomal interval which can be expanded by treatment with radiation. These results are consistent with the suggestion that the szT1(I) breakpoint is in a region of DNA in which meiotic recombination is suppressed relative to the genomic average. We propose that DNA sequences disrupted by the szT1 translocation are responsible for determining the frequency of meiotic recombination in the vicinity of the breakpoint.  相似文献   

5.
A. M. Villeneuve 《Genetics》1994,136(3):887-902
This study reports the characterization of a cis-acting locus on the Caenorhabditis elegans X chromosome that is crucial for promoting normal levels of crossing over specifically between the X homologs and for ensuring their proper disjunction at meiosis I. The function of this locus is disrupted by the mutation me8, which maps to the extreme left end of the X chromosome within the region previously implicated by studies of X;A translocations and X duplications to contain a meiotic pairing site. Hermaphrodites homozygous for a deletion of the locus (Df/Df) or heterozygous for a deletion and the me8 mutation (me8/Df) exhibit extremely high levels of X chromosome nondisjunction at the reductional division; this is correlated with a sharp decrease in crossing over between the X homologs as evidenced both by reductions in genetic map distances and by the presence of achiasmate chromosomes in cytological preparations of oocyte nuclei. Duplications of the wild-type region that are unlinked to the X chromosome cannot complement the recombination and disjunction defects in trans, indicating that this region must be present in cis to the X chromosome to ensure normal levels of crossing over and proper homolog disjunction. me8 homozygotes exhibit an altered distribution of crossovers along the X chromosome that suggests a defect in processivity along the X chromosome of an event that initiates at the chromosome end. Models are discussed in which the cis-acting locus deleted by the Dfs functions as a meiotic pairing center that recruits trans-acting factors onto the chromosomes to nucleate assembly of a crossover-competent complex between the X homologs. This pairing center might function in the process of homolog recognition, or in the initiation of homologous synapsis.  相似文献   

6.
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.  相似文献   

7.
Chromosome configurations and structures during meiotic prophase were investigated by staining large repeated DNA sequences localized in the subtelomeric regions of all the chromosomes in rye, Secale cereale, in order to clarify when and how homolog pairing and bouquet formation occur. The changes of the spatial locations of chromosomes in the nucleus were investigated by the use of laser confocal microscopy, together with the surface-spreading method of silver nitrate staining to detect the formation of the synaptonemal complex. Homolog pairing in which homologs of four chromatids of a pair of homologs were coaligned in parallel but remained distinctly separate was microscopically detected for the first time in the present study. Homolog pairing showed the following characteristics: (1) it occurred at the leptotene-zygotene transition stage, prior to the formation of nodules and the synaptonemal complex; (2) the chromatin structure of chromosomes was in a state of decondensation; (3) it required no telomere clustering. These data suggest that homolog pairing represents a structure that indicates incipient recombination. After the homolog pairing stage, two kinds of bouquet configuration were found in zygotene. The commonly observed type was a loose bouquet, in which the subtelomeric regions were loosely aggregated. The other type was a definite bouquet, in which almost all the subtelomeric regions were conjugated, but this type was observed only in a limited number of the meiotic prophase cells of some individuals. It was concluded that the former represents the configuration of homologous recombination and the latter that of ectopic recombination.  相似文献   

8.
A. Koller  J. Heitman    M. N. Hall 《Genetics》1996,144(3):957-966
In meiosis I, homologous chromosomes pair, recombine and segregate to opposite poles. These events and subsequent meiosis II ensure that each of the four meiotic products has one complete set of chromosomes. In this study, the meiotic pairing and segregation of a trisomic chromosome in a diploid (2n + 1) yeast strain was examined. We find that trivalent pairing and segregation is the favored arrangement. However, insertions near the centromere in one of the trisomic chromosomes leads to preferential pairing and segregation of the ``like' centromeres of the remaining two chromosomes, suggesting that bivalent-univalent pairing and segregation is favored for this region.  相似文献   

9.
BACKGROUND: Meiotic pairing is essential for the proper orientation of chromosomes at the metaphase plate and their subsequent disjunction during anaphase I. In male Drosophila melanogaster, meiosis occurs in the absence of recombination or a recognizable synaptonemal complex (SC). Due to limitations in available cytological techniques, the early stages of homologous chromosome pairing in male Drosophila have not been observed, and the mechanisms involved are poorly understood.RESULTS: Chromosome tagging with GFP-Lac repressor protein allowed us to track, for the first time, the behavior of meiotic chromosomes at high resolution, live, at all stages of male Drosophila meiosis. Homologous chromosomes pair throughout the euchromatic regions in spermatogonia and during the early phases of spermatocyte development. Extensive separation of homologs and sister chromatids along the chromosome arms occurs in mid-G2, several hours before the first meiotic division, and before the G2/M transition. Centromeres, on the other hand, show complex association patterns, with specific homolog pairing taking place in mid-G2. These changes in chromosome pairing parallel changes in large-scale chromosome organization.CONCLUSIONS: Our results suggest that widespread interactions along the euchromatin are required for the initiation, but not the maintenance, of meiotic pairing of autosomes in male Drosophila. We propose that heterochromatic associations, or chromatid entanglement, may be responsible for the maintenance of homolog association during late G2. Our data also suggest that the formation of chromosome territories in the spermatocyte nucleus may play an active role in ensuring the specificity of meiotic pairing in late prophase by disrupting interactions between nonhomologous chromosomes.  相似文献   

10.
Sherizen D  Jang JK  Bhagat R  Kato N  McKim KS 《Genetics》2005,169(2):767-781
In the pairing-site model, specialized regions on each chromosome function to establish meiotic homolog pairing. Analysis of these sites could provide insights into the mechanism used by Drosophila females to form a synaptonemal complex (SC) in the absence of meiotic recombination. These specialized sites were first established on the X chromosome by noting that there were barriers to crossover suppression caused by translocation heterozygotes. These sites were genetically mapped and proposed to be pairing sites. By comparing the cytological breakpoints of third chromosome translocations to their patterns of crossover suppression, we have mapped two sites on chromosome 3R. We have performed experiments to determine if these sites have a role in meiotic homolog pairing and the initiation of recombination. Translocation heterozygotes exhibit reduced gene conversion within the crossover-suppressed region, consistent with an effect on the initiation of meiotic recombination. To determine if homolog pairing is disrupted in translocation heterozygotes, we used fluorescent in situ hybridization to measure the extent of homolog pairing. In wild-type oocytes, homologs are paired along their entire lengths prior to accumulation of the SC protein C(3)G. Surprisingly, translocation heterozygotes exhibited homolog pairing similar to wild type within the crossover-suppressed regions. This result contrasted with our observations of c(3)G mutant females, which were found to be defective in pairing. We propose that each Drosophila chromosome is divided into several domains by specialized sites. These sites are not required for homolog pairing. Instead, the initiation of meiotic recombination requires continuity of the meiotic chromosome structure within each of these domains.  相似文献   

11.
M. C. Zetka  A. M. Rose 《Genetics》1992,131(2):321-332
The rearrangement hIn1(I) was isolated as a crossover suppressor for the right end of linkage group (LG) I. By inducing genetic markers on this crossover suppressor and establishing the gene order in the homozygote, hIn1(I) was demonstrated to be the first genetically proven inversion in Caenorhabditis elegans. hIn1(I) extensively suppresses recombination in heterozygotes in the right arm of chromosome I from unc-75 to unc-54. This suppression is associated with enhancement of recombination in other regions of the chromosome. The enhancement observed maintains the normal distribution of events but does not extend to other chromosomes. The genetic distance of chromosome I in inversion heterozygotes approaches 50 map units (m.u.), approximately equal to one chiasma per meiosis. This value is maintained in hIn1(I)/szT1(I;X) heterozygotes indicating that small homologous regions can pair and recombine efficiently. hIn1(I)/hT2(I;III) heterozygotes share no uninverted homologous regions and segregate randomly, suggesting the importance of chiasma formation in proper segregation of chromosomes. The genetic distance of chromosome I in these heterozygotes is less that 1 m.u., indicating that crossing over can be suppressed along an entire chromosome. Since one of our goals was to develop an efficient balancer for the right end of LGI, the effectiveness of hIn1(I) as a balancer was tested by isolating and maintaining lethal mutations. The meiotic behaviour of hIn1(I) is consistent with other genetic and cytogenetic data suggesting the meiotic chromosomes are monocentric. Rare recombinants bearing duplications and deficiencies of chromosome I were recovered from hIn1(I) heterozygotes, leading to the proposal the inversion was paracentric.  相似文献   

12.
Schlecht HB  Lichten M  Goldman AS 《Genetics》2004,168(3):1189-1203
As yeast cells enter meiosis, chromosomes move from a centromere-clustered (Rabl) to a telomere-clustered (bouquet) configuration and then to states of progressive homolog pairing where telomeres are more dispersed. It is uncertain at which stage of this process sequences commit to recombine with each other. Previous analyses using recombination between dispersed homologous sequences (ectopic recombination) support the view that, on average, homologs are aligned end to end by the time of commitment to recombination. We have undertaken further analyses incorporating new inserts, chromosome rearrangements, an alternate mode of recombination initiation, and mutants that disrupt nuclear structure or telomere metabolism. Our findings support previous conclusions and reveal that distance from the nearest telomere is an important parameter influencing recombination between dispersed sequences. In general, the farther dispersed sequences are from their nearest telomere, the less likely they are to engage in ectopic recombination. Neither the mode of initiating recombination nor the formation of the bouquet appears to affect this relationship. We suggest that aspects of telomere localization and behavior influence the organization and mobility of chromosomes along their entire length, during a critical period of meiosis I prophase that encompasses the homology search.  相似文献   

13.
The roundworm Caenorhabditis elegans has a haploid karyotype containing six linear chromosomes. The termini of worm chromosomes have been proposed to play an important role in meiotic prophase, either when homologs are participating in a genome-wide search for their proper partners or in the initiation of synapsis. For each chromosome one end appears to stimulate crossing-over with the correct homolog; the other end lacks this property. We have used a bioinformatics approach to identify six repetitive sequence elements in the sequenced C.elegans genome whose distribution closely parallels these putative meiotic pairing centers (MPC) or homolog recognition regions (HRR). We propose that these six DNA sequence elements, which are largely chromosome specific, may correspond to the genetically defined HRR/MPC elements.  相似文献   

14.
Thomas SE  McKee BD 《Genetics》2007,177(2):785-799
In most eukaryotes, segregation of homologous chromosomes during meiosis is dependent on crossovers that occur while the homologs are intimately paired during early prophase. Crossovers generate homolog connectors known as chiasmata that are stabilized by cohesion between sister-chromatid arms. In Drosophila males, homologs pair and segregate without recombining or forming chiasmata. Stable pairing of homologs is dependent on two proteins, SNM and MNM, that associate with chromosomes throughout meiosis I until their removal at anaphase I. SNM and MNM localize to the rDNA region of the X-Y pair, which contains 240-bp repeats that have previously been shown to function as cis-acting chromosome pairing/segregation sites. Here we show that heterochromatic mini-X chromosomes lacking native rDNA but carrying transgenic 240-bp repeat arrays segregate preferentially from full-length sex chromosomes and from each other. Mini-X pairs do not form autonomous bivalents but do associate at high frequency with the X-Y bivalent to form trivalents and quadrivalents. Both disjunction of mini-X pairs and multivalent formation are dependent on the presence of SNM and MNM. These results imply that 240-bp repeats function to mediate association of sex chromosomes with SNM and MNM.  相似文献   

15.
In most eukaryotic species, three basic steps of pairing, recombination and synapsis occur during prophase of meiosis I. Homologous chromosomal pairing and recombination are essential for accurate segregation of chromosomes. In contrast to the well-studied processes such as recombination and synapsis, many aspects of chromosome pairing are still obscure. Recent progress in several species indicates that the telomere bouquet formation can facilitate homologous chromosome pairing by bringing chromosome ends into close proximity, but the sole presence of telomere clustering is not sufficient for recognizing homologous pairs. On the other hand, accurate segregation of the genetic material from parent to offspring during meiosis is dependent on the segregation of homologs in the reductional meiotic division (MI) with sister kinetochores exhibiting mono-orientation from the same pole, and the segregation of sister chromatids during the equational meiotic division (MII) with kinetochores showing bi-orientation from the two poles. The underlying mechanism of orientation and segregation is still unclear. Here we focus on recent studies in plants and other species that provide insight into how chromosomes find their partners and mechanisms mediating chromosomal segregation.  相似文献   

16.
17.
Homologous chromosome pairing is required for proper chromosome segregation and recombination during meiosis. The mechanism by which a pair of homologous chromosomes contact each other to establish pairing is not fully understood. When pairing occurs during meiotic prophase in the fission yeast, Schizosaccharomyces pombe, the nucleus oscillates between the cell poles and telomeres remain clustered at the leading edge of the moving nucleus. These meiosis-specific activities produce movements of telomere-bundled chromosomes. Several lines of evidence suggest that these movements facilitate homologous chromosome pairing by aligning homologous chromosomes and promoting contact between homologous regions. Since telomere clustering and nuclear or chromosome movements in meiotic prophase have been observed in a wide range of eukaryotic organisms, it is suggested that telomere-mediated chromosome movements are general activities that facilitate homologous chromosome pairing.  相似文献   

18.
Li W  Ma H 《Cell research》2006,16(5):402-412
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO 11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD5 1, DMC 1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.  相似文献   

19.
A universal feature of meiotic prophase is the pairing of homologous chromosomes, a fundamental prerequisite for the successful completion of all subsequent meiotic events. HIM-3 is a Caenorhabditis elegans meiosis-specific non-cohesin component of chromosome axes that is required for synapsis. Our characterization of new him-3 alleles reveals previously unknown functions for the protein. HIM-3 is required for the establishment of initial contacts between homologs, for the nuclear reorganization characteristic of early meiotic prophase, and for the coordination of these events with synaptonemal complex (SC) assembly. Despite the absence of homolog alignment, we find that recombination is initiated efficiently, indicating that initial pairing is not a prerequisite for early steps of the recombination pathway. Surprisingly, RAD-51-marked recombination intermediates disappear with apparent wild-type kinetics in him-3 null mutants in which homologs are spatially unavailable for recombination, raising the possibility that HIM-3's presence at chromosome axes inhibits the use of sister chromatids as templates for repair. We propose that HIM-3 is a molecular link between multiple landmark events of meiotic prophase; it is critical for establishing chromosome identity by configuring homologs to facilitate their recognition while simultaneously imposing structural constraints that later promote the formation of the crossover essential for proper segregation.  相似文献   

20.
OsHUS1 Facilitates Accurate Meiotic Recombination in Rice   总被引:1,自引:0,他引:1  
Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号