首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protoplasma - Wheat (Triticum aestivum L.) is one of the most important food crops in the world. Somatic embryogenesis is an event that is triggered by the presence of auxin hormone for the...  相似文献   

2.
Genetics of Aux/IAA and ARF action in plant growth and development   总被引:33,自引:0,他引:33  
  相似文献   

3.
4.
5.
黄瓜果实中ARF和Aux/IAA基因对外源激素的应答   总被引:1,自引:0,他引:1  
以非单性结实黄瓜自交系‘6429’为试验材料,对当天开花的果实进行CPPU、Spd、NAA、2,4-D和IAA等5种生长物质处理,以清水为对照,选取9个ARF基因(Csa019264、Csa019265、Csa009209、Csa009210、Csa021954、Csa012237、Csa012805、Csa015176、Csa010564)和5个Aux/IAA基因(Csa003118、Csa012115、Csa016715、Csa006680、Csa018571)设计特异引物,取开花当天与花后第2、4天的果实及其茎、叶作RT-PCR分析。结果显示,9个ARF基因的表达水平显示出了很大的差异,Csa012805在所有激素处理后的果实中都有较高水平的表达而清水处理中未检测到;5个Aux/IAA基因中的4个在6种处理后的果实及茎叶中都有表达,推测是组成型表达基因,Csa016715在激素处理后的果实中比清水处理的未发育果实中的表达水平高。推测Csa012805和Csa016715这2个基因对黄瓜果实膨大起促进作用。  相似文献   

6.
Auxin is one of the most important phytohormones involved in plant growth and development. Here, we identified a total of 26 Aux/IAA genes displaying high sequence identity within the conserved domains I, II, III, and IV by screening the grapevine genome proteome 12× database. The Vitis vinifera Aux/IAA proteins can be classified into two groups (A and B) on the basis of their phylogenetic relationships. A search for cis-regulatory elements in the promoter sequences of VvAux/IAA genes revealed that the majority of these proteins may be regulated by light, phytohormones, and abiotic stresses. We also report the isolation and expression analysis of the cDNA of VvAux/IAA4, the most highly expressed VvAux/IAA gene from V. vinifera cv. Sultanine, according to ESTs in the NCBI database. The VvAux/IAA4 gene contains a full-length open reading frame of 1,080 bp, and its predicted amino acid sequence is highly similar to those of Aux/IAA proteins from other plants, including the presence of an AuxIAA/ARF dimerization motif in the C-terminal region. The expression of VvAux/IAA4 was found to be elevated during berry development, and slowly decrease from the initiation of ripening to the overripening stage. VvAux/IAA4 was highly expressed in young leaves and roots, and expressed at low levels in pollen and tendrils. Finally, the expression of VvAux/IAA4 was rapidly induced in response to NAA treatment, but was decreased by salt, drought, and SA treatments. Our results provide evidence of crosstalk between phytohormone and abiotic stresses, and support a role for auxin in stress responses.  相似文献   

7.
Plant Molecular Biology Reporter - Auxin response factor (ARF) and Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are the foremost regulators of auxin action and play an essential role in the...  相似文献   

8.
9.
Combinatorial interactions of AUXIN RESPONSE FACTORs (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins through their common domains III and IV regulate auxin responses, but insight into the functions of individual proteins is still limited. As a new tool to explore this regulatory network, we generated a gain-of-function ARF genotype by eliminating domains III and IV from the functionally well-characterized ARF MONOPTEROS(MP)/ARF5. This truncated version of MP, termed MPΔ, conferred complementing MP activity, but also displayed a number of semi-dominant traits affecting auxin signaling and organ patterning. In MPΔ, the expression levels of many auxin-inducible genes, as well as rooting properties and vascular tissue abundance, were enhanced. Lateral organs were narrow, pointed and filled with parallel veins. This effect was epistatic over the vascular hypotrophy imposed by certain Aux/IAA mutations. Further, in MPΔ leaves, failure to turn off the procambium-selecting gene PIN1 led to the early establishment of oversized central procambial domains and very limited subsequent lateral growth of the leaf lamina. We conclude that MPΔ can selectively uncouple a single ARF from regulation by Aux/IAA proteins and can be used as a genetic tool to probe auxin pathways and explore leaf development.  相似文献   

10.
11.
Roles and activities of Aux/IAA proteins in Arabidopsis.   总被引:12,自引:0,他引:12  
Auxin induces various distinct developmental responses, partly by regulating gene expression. The Aux/IAA genes are a large gene family, many of which are induced by auxin. Work on Arabidopsis Aux/IAA genes has begun to reveal that they can regulate development and auxin-induced gene expression. Furthermore, auxin responses require Aux/IAA protein turnover. Finally, recent evidence suggests that Aux/IAA proteins can mediate light responses. Work in the near future should test whether Aux/IAA proteins are antennae that connect auxin and light signals to endogenous developmental responses.  相似文献   

12.
Aux/IAA proteins are phosphorylated by phytochrome in vitro   总被引:22,自引:0,他引:22       下载免费PDF全文
  相似文献   

13.
14.
In Catharanthus roseus cells, auxins are known to negatively regulate the biosynthesis of monoterpenoid indole alkaloids (MIA), a class of valuable secondary metabolites. Despite extensive studies of this regulation, no protein of the auxin signaling pathway has been isolated to date in this plant. We therefore decided to clone and characterize a C. roseus Aux/IAA protein that belongs to a family of gene expression repressors mediating auxin effects. Using PCR, a cDNA encoding the first C. roseus Aux/IAA was cloned and named CrIAA1. The deduced amino acid sequence has four highly conserved domains that are typical of the Aux/IAA protein family and has high homology to the Aux/IAA isoforms of Arabidopsis (>67%). The CrIAA1 gene expression, monitored by real-time PCR, was found to be dramatically induced by auxin treatment in C. roseus cells. Using GFP imagery and a bimolecular fluorescence complementation assay, we found that CrIAA1 can form oligomers in the nucleus. We also found that CrIAA1 is quickly degraded following auxin treatments, suggesting that auxin regulates CrIAA1 availability via a feedback mechanism. These results should help to elucidate the molecular nature of the processes responsible for the auxin-mediated regulation of MIA biosynthesis in C. roseus.  相似文献   

15.
16.
Indole acetic acid (IAA/auxin) profoundly affects wood formation but the molecular mechanism of auxin action in this process remains poorly understood. We have cloned cDNAs for eight members of the Aux/IAA gene family from hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) that encode potential mediators of the auxin signal transduction pathway. These genes designated as PttIAA1-PttIAA8 are auxin inducible but differ in their requirement of de novo protein synthesis for auxin induction. The auxin induction of the PttIAA genes is also developmentally controlled as evidenced by the loss of their auxin inducibility during leaf maturation. The PttIAA genes are differentially expressed in the cell types of a developmental gradient comprising the wood-forming tissues. Interestingly, the expression of the PttIAA genes is downregulated during transition of the active cambium into dormancy, a process in which meristematic cells of the cambium lose their sensitivity to auxin. Auxin-regulated developmental reprogramming of wood formation during the induction of tension wood is accompanied by changes in the expression of PttIAA genes. The distinct tissue-specific expression patterns of the auxin inducible PttIAA genes in the cambial region together with the change in expression during dormancy transition and tension wood formation suggest a role for these genes in mediating cambial responses to auxin and xylem development.  相似文献   

17.
The diageotropica (dgt) mutation has been proposed to affect either auxin perception or responsiveness in tomato plants. It has previously been demonstrated that the expression of one member of the Aux/IAA family of auxin-regulated genes is reduced in dgt plants. Here, we report the cloning of ten new members of the tomato Aux/IAA family by PCR amplification based on conserved protein domains. All of the gene family members except one (LeIAA7) are expressed in etiolated tomato seedlings, although they demonstrate tissue specificity (e.g. increased expression in hypocotyls vs. roots) within the seedling. The wild-type auxin-response characteristics of the expression of these tomato LeIAA genes are similar to those previously described for Aux/IAA family members in Arabidopsis. In dgt seedlings, auxin stimulation of gene expression was reduced in only a subset of LeIAA genes (LeIAA5, 8, 10, and 11), with the greatest reduction associated with those genes with the strongest wild-type response to auxin. The remaining LeIAA genes tested exhibited essentially the same induction levels in response to the hormone in both dgt and wild-type hypocotyls. These results confirm that dgt plants can perceive auxin and suggest that a specific step in early auxin signal transduction is disrupted by the dgt mutation.  相似文献   

18.

Background

Indole-3-acetic acid (IAA) extraction and purification are of great importance in auxin research, which is a hot topic in the plant growth and development field. Solid-phase extraction (SPE) is frequently used for IAA extraction and purification. However, no IAA-specific SPE columns are commercially available at the moment. Therefore, the development of IAA-specific recognition materials and IAA extraction and purification methods will help researchers meet the need for more precise analytical methods for research on phytohormones.

Results

Since the AUXIN RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) proteins show higher specific binding capability with auxin, recombinant IAA1, IAA7 and IAA28 proteins were used as sorbents to develop an IAA extraction and purification method. A GST tag was used to solidify the recombinant protein in a column. Aux/IAA proteins solidified in a column have successfully trapped trace IAA in aqueous solutions. The IAA7 protein showed higher IAA binding capability than the other proteins tested. In addition, expression of the IAA7 protein in Drosophila Schneider 2 (S2) cells produced better levels of binding than IAA7 expressed in E. coli.

Conclusion

This work validated the potential of Aux/IAA proteins to extract and purify IAA from crude plant extracts once we refined the techniques for these processes.
  相似文献   

19.
20.
Aux/IAA proteins contain a potent transcriptional repression domain   总被引:21,自引:0,他引:21  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号