首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field studies on Japanese macaques on Yakushima Island started in the mid-1970s, >25 yr after the emergence of Japanese primatology, in response to criticism of methods using provisioning and the desire to find the socioecological factors influencing the social life of macaques in natural habitats. We habituated macaques without provisioning mainly in the coastal warm-temperate forest and found that they lived in small troops with a high socionomic sex ratio. Observations of several troop fissions and troop takeovers by nontroop males suggest that Yakushima macaques have a different social organization from that of Japanese macaques in other habitats. For example, youngest ascendancy as the dominance relationhip among sisters, which usually occurs in provisioned troops, was absent in Yakushima macaques. We compared their ecological and social features with those of Japanese macaques at Kinkazan (cool-temperate forests) and found that abundance of high-quality foods may cause stronger intra- and intertroop competition at Yakushima. Female Yakushima macaques may more positively solicit nontroop males to associate with them during the mating season. Such a tendency may promote frequent male movement between troops and frequent troop fissions. Though ecological factors form social features of Japanese macaques, some features such as male association and movements between troops are not accounted for via socioecology. Recent field studies have focused on macaques living at higher altitudes in Yakushima and on individual survival strategies by taking diverse viewpoints and using new technologies. DNA analysis of fecal samples shows low genetic diversity and suggests the macaques’ recent expansion from lowland to highland forests in Yakushima. The population censuses conducted annually indicate that the higher-altitude macaques have a larger home range but a similar group size versus their counterparts at low elevations. The unsolved issues in socioecology will pose a challenge to the younger generation of primatologists. Conservation of macaques and their habitat is one of our major activities at Yakushima. The level of protection has gradually increased in the National Park at Yakushima and, via our various conservation efforts, its most important area was designated a World Heritage Site by UNESCO in 1993. However, large-scale logging in the 1960s and 1970s caused the loss of macaque habitats and led to increased crop damage by them in the 1980s. We have proposed effective methods to protect cultivated fields from macaques as well as several plans for sustainable use of forests, such as ecotourism and a fieldwork course for university students. Local residents and researchers have created several nongovernment organizations (NGOs) to promote conservation and nature study at Yakushima. The role of local NGOs is particularly important to mitigate conflicts between people and wildlife. Though hundreds of macaques are still captured as pests annually in Yakushima, we continue the conservation measures and spread awareness of conservation in cooperation with the local NGOs.  相似文献   

2.
For the wild Japanese macaques of Yakushima and Kinkazan Islands, we analyzed the relationship between the troop size or the number of adult females of each troop, infant/adult female ratio (IFR; crude birth rate), and infant mortality (IM) in habitats with no predators. In Yakushima, IFR was positively correlated to troop size and the number of adult females. In Kinkazan, however, IFR tended to decrease with the number of adult females. This difference may be due to the difference in troop size; i.e. in Yakushima, where troop size was small, IFR may increase with that of troop size, because a relatively larger troop is likely to the advantage in intertroop competition. In Kinkazan, where troop size was large, however, IFR is likely to decrease with troop size, because intratroop competition may increase. Thus, the present data roughly supportWrangham's model of the social structure of female-bonded primates, and suggests that there is an optimal troop size for birth rate (BR). On the other hand, there was no clear correlation between IM and the troop size or number of adult females of each troop.  相似文献   

3.
Wild Japanese macaque females of the Yakushima and Kinkazan populations exhibited similar reproductive features. (1) Births/female/year (BR: 0.27–0.35) was lower than those of provisioned troops, but (2) infant mortality (IM: 0.23–0.25) was higher than those of provisioned troops. (3) The interbirth interval (IBI) following the death of infants was 1.5–1.6 years, shorter than that following surviving infants (2.2–2.4 yrs). (4) Birth sex ratio (BSR) did not differ from 1∶1. There was no consistent correlation between (5) female age and IM, (6) maternal rank and offspring BSR, or (7) maternal rank and reproductive success. On the other hand, (8) BR of Yakushima females was significantly lower than that of Kinkazan females. In particular, (9) Yakushima females stopped reproduction earlier than Kinkazan females, although (10) the first birth of Yakushima females was about one year earlier than Kinkazan females. (11) BR exhibited a humped curve against female age in Yakushima, but it was uncertain whether old-aged females of Kinkazan exhibited a post-reproductive life span (PRLS). (12) The survivorship for female juveniles was lower than that for male juveniles in Yakushima, whereas the survivorship for male juveniles was lower than that for female juveniles in Kinkazan. These data may indicate that Yakushima females more severely compete for resources than Kinkazan females, because of high population density, whereas the population density of Kinkazan might be limited by climate (e.g. heavy snow) rather than density dependent ecological effects.  相似文献   

4.
The per capita home range area of Japanese macaques,Macaca fuscata, is significantly smaller in evergreen forest than in deciduous forest, though a corresponding difference in food resource utilization patterns has never been described. The present study compared the home range utilization pattern of Japanese macaques living in two habitats: the Yakushima population inhabits an evergreen forest, while the Kinkazan population inhabits a deciduous forest. We found that in the Yakushima population, (1) food density was higher; (2) inter-feeding bout sites distance was shorter; (3) daily travel distance was shorter; (4) home range size was smaller; and (5) the unit value of the main home range was higher, than in the Kinkazan population. Yakushima groups utilized a small home range area intensively, compared to Kinkazan groups. We also found that a Yakushima group shared 24% of its main home range with neighboring groups, though a Kinkazan group shared only 10% with other groups. It is supposed that food distribution affects daily ranging pattern, and ultimately the social relationships between groups in Japanese macaques.  相似文献   

5.
This paper compares male life history parameters of two populations of Japanese macaques (Macaca fuscata Blyth, 1875), studied without provisioning: Yakushima (M. f. yakui), a subtropical forest habitat in southwestern Japan, and Kinkazan (M. f. fuscata), a temperate, deciduous forest habitat in northeastern Japan. The males of the two sites experienced similar life histories with respect to several traits. Age at natal dispersal was at about 5 years. Average troop residence was about three years. Most males joined troops at the bottom of the rank order, although a few males joined troops at the top rank. Dominance ranks of males tended to rise with the death or departure of higher ranking males. Visiting males accounted for about 41% of observed mating at both sites. However, the two sites differed in the sex ratio of troops, partly because a larger proportion of males apparently lived outside of troops in the Kinkazan site compared to Yakushima. In particular, non-natal young males were absent from the main study troop at Kinkazan. Large within-species variation may exist in the degree to which males associate with troops.  相似文献   

6.
It is predicted that variation in intergroup relationships in group living primates reflects the cost and benefit of resource defense. We tested the applicability of the model by examining population difference, group difference, and seasonal difference in behaviors during intergroup encounters in two populations of Japanese macaques (Macaca fuscata), one of six groups from Yakushima Island, and the other of three groups from Kinkazan Island. We found that the nature of intergroup encounter varied with group identity, reproductive seasonality, and population. Yakushima groups showed aggressive behaviors more frequently than did Kinkazan groups and the difference was consistent with the food competition model, both because of the involvement of females, and because home ranges were smaller on Yakushima than on Kinkazan, and thus more defensive. Both sexes of animals participated in aggressive interactions, but males were more aggressive than females. Furthermore, Yakushima population showed more agonistic intergroup behaviors during the mating season than the non-mating season. Also during the encounters, intergroup mating was observed, but only in Yakushima. It is concluded that intergroup relationships reflect the mate guarding behavior by group males. However, the agonistic relationship during non-mating season, especially that of among females, is also consistent with the food competition model. It is also noted that males' behavior toward other groups can also be interpreted as a form of investigative behavior before possible transfer into a new group.  相似文献   

7.
Feeding behaviors of Japanese monkeys (Macaca fuscata) were compared between a warm temperate habitat (Yakushima Island: 30°N, 131°E) and a cool temperate habitat (Kinkazan Island: 38°N, 141°E). The composition of diet and the activity budget in the two habitats were very different. Time spent feeding on Kinkazan Island was 1.7 times that on Yakushima Island. Two factors seem to be responsible for these: (1) the energy required for thermoregulation of monkeys on Kinkazan Island is greater than that on Yakushima Island; and (2) the food quality, which affects the intake speed of available energy, is lower on Kinkazan Island. However, monkeys in both habitats increased their moving time and decreased their feeding time when they fed on foods of relatively high quality. Such foraging strategies are predicted by optimal foraging models. Time spent social grooming on Yakushima Island was 1.9 times that on Kinkazan Island, although there were slight seasonal changes in both areas. The difference in time spent social grooming might be explained by the overall difference in feeding time and day length between the two habitats.  相似文献   

8.
We examined the interaction between intertroop transfer and male dominance ranks in a wild population of Japanese macaques (Macaca fuscata yakui) in Yakushima using data collected over 15 years. Intertroop transfer tended to maintain a linear, stable, and age-graded dominance rank order among nonnatal males irrespective of variation in troop size or composition. All males that joined a troop at the top of the rank order were prime adults. Among males joining at lower ranks, entry at the most subordinate position in the hierarchy was common. Males joining at lower ranks tended to join troops in which all other resident males were the same age or older. Adult males tended to join troops with few or no males. Young males tended to join troops with many resident males, and in which a relatively large proportion of males was other young ones. Intertroop transfer was responsible for most rank changes of resident males. The most common cause of males rising in rank was the emigration or death of a higher-ranking male. Males fell in rank most frequently as a result of a new male joining the troop at the top of the hierarchy. Rank reversals among resident males were rare. The cumulative effects of male transfers produce sociodemographic variation within a troop over time and sociodemographic diversity among troops in a local population. A key feature of intertroop diversity is that larger troops have a significantly greater proportion of young males than smaller troops. This diversity also creates the potential for intertroop variation in the severity of male competition and provides a range of options for transferring males.  相似文献   

9.
The nature of intergroup encounters differed between two populations of wild Japanese macaques (Macaca fuscata): the Yakushima and Kinkazan populations. In the Yakushima population, intergroup encounters were more likely to result in the displacement of one group, intergroup agonistic interaction was common, and intergroup dominance was usually distinct. When displacement occurred at Yakushima, larger groups tended to dominate smaller ones. Conversely, in the Kinkazan population, intergroup encounters rarely resulted in displacement, intergroup agonistic interaction was rare, and intergroup dominance was usually unclear. Thus, monkeys in Yakushima appear to defend resources actively during encounters, while those in Kinkazan usually did not defend resources. The frequency of encounters was significantly higher in Yakushima than in Kinkazan. The two populations had very different group densities and traveling speeds, both of which directly influence the chance of encounters. Taking these differences into account, we compared the observed frequency with those predicted by the ideal gas model. The observed frequencies in both populations were about one-third of the number expected with the model, which suggests that the differences in encounter frequency were caused by differences in group density and traveling speed. We discuss this intraspecific variation in light of economic defendability in connection to habitat differences and the evolutionary significance of resource defense behavior.  相似文献   

10.
Wild, habituated, Japanese monkeys were observed from 1975 to 1979 on Yakushima Island, Southern Japan. The monkey troops had a continuous distribution in a warm temperate forest. Demographic data on local populations was collected. The population density was 33 animals/km2. The growth rate of the studied troop was 3.0% per year. A significant correlation between home range areas (R) and troop size (P) was found (r=0.955,p<0.005), using anR-P equation,R=1.84P. One troop split into three troops through two successive fissions. Twenty-one intertroop encounters were observed. Five types of encounters were distinguished. The encounters were apparently territorial defence. Increases in birth rate and socionomic sex ratio after the fissions were prominent. The following four factors had a direct effect upon the dispersion of the troops after fission: (1) dominance relation between the fission troops; (2) social pressure of the neighbors; (3) troop's attachment to its home range; and (4) structure of the environment. The home range of Japanese monkeys is a territory, and territoriality is a population regulating mechanism which serves to reduce competition for food.  相似文献   

11.
The mass mortality of wild Japanese macaques (Macaca fuscata Blyth) was observed in a warm temperate forest of Yakushima, southern Japan. Demographic changes of eight troops between August 1998 and August 1999 were studied and 56% of macaques disappeared from the five intensively studied troops. Mortality varied among troops: two troops became extinct, while another troop did not decrease in size. The rate of mortality of the other troops was between 33 and 80%. The variation in mortality among the troops was either the outcome of local concentrations of mortality or of intertroop competition. The rate of mortality decreased with increasing distance from the two extinct troops and with increasing troop size; these two factors could not be separated statistically. The direct cause of death was diagnosed as pneumonia for four out of five fresh carcasses. The fleshy fruit production in autumn 1998 was the lowest in 14years, and macaques had relied on leaves earlier than in usual years. It was exceptionally hot and dry in the summer of 1998. The exceptionally poor fruit production and hot summer of this year, with the resulting shortage of high-quality foods, was consistent with the scenario that mass mortality was due to the poor nutritional conditions. However, the possibility that epidemics caused the mass mortality cannot be ruled out. Our findings proved that primates in a seemingly stable habitat experience fluctuations in demographic parameters under natural conditions.  相似文献   

12.
The influences of socionomic sex ratio (SSR; adult males/adult female) and troop size upon male-male, female-female, and male-female grooming relationships were examined and compared between two wild Japanese macaque troops (Kinkazan A and Yakushima M troops) in Japan. The Yakushima M troop was smaller and had a higher-SSR than the Kinkazan A troop. Between the troops, (1) the male-male grooming frequency and number of partners were greater in the Yakushima M troop than in the Kinkazan A troop; (2) the female-female grooming frequency and number of partners were not different; and (3) the male-female grooming frequency and number of partners were not different. Based on these features, the patterns of female-female and male-female grooming relationships appear to be independent of SSR and troop size variations. In contrast, male-male grooming relationships are influenced by both factors, especially SSR. Frequent grooming interactions among males may be useful for the continued coexistence of relatively many males especially in a higher-SSR troop.  相似文献   

13.
We studied the characteristics of seeds within faeces, an important aspect of endozoochorous seed dispersal, in Japanese macaques Macaca fuscata inhabiting Kinkazan Island, northern Japan. We intermittently collected faecal samples from 1999 to 2009 (N = 1294) and examined the rate of seed occurrence, species/life-form composition, number of seeds, and their intact rate. Seeds were found within faecal samples during every month, but their characteristics changed monthly: the rate of seed occurrence and the number of plant species within faecal samples were greater in summer and fall, and the intact rate and number of intact seeds observed within single faecal samples were also higher during these seasons than spring and winter. These results suggest that Japanese macaques on Kinkazan act as seed dispersers in summer and fall and that they disperse intact seeds into wider areas within the forest through defecation. During the study period, we observed seeds from a total of 35 plant species from 22 families in our samples. In addition to those of woody plants, we also observed seeds from as many as 12 herbaceous plants, for which sympatric sika deer (Cervus nippon) have historically been considered the sole seed dispersal agents. The intact rate of seeds was significantly negatively correlated with the seeds’ mean cubic diameter, and this relationship was strengthened for non-fleshy fruits. We also conducted regional comparisons of the characteristics of defecated seeds in order to address whether regional variations in the diet of the macaques affect their efficacy as seed dispersers, both in terms of quantity and quality. Macaques living in the natural habitats of Kinkazan and Yakushima dispersed more seeds of tall tree species than do macaques inhabiting the human-altered areas of in Shimokita and Kashima. The number of plant species represented within single faecal samples also varied geographically, being greater in Yakushima. This pattern likely resulted from Yakushima's warm temperate climate, as the other three study sites occur in the cool temperate region. Our results suggest that the composition of seeds dispersed by Japanese macaques is not rigid, but is determined instead by the vegetation found in a given habitat.  相似文献   

14.
A census of wild Yakushima macaques (Macaca fuscata yakui) was carried out in a 23-km2 area of the western coast of Yakushima Island, Japan. We analyzed the census data to investigate changes in monkey distribution associated with the vertical distribution of vegetation. In the lowland coastal zone of 0–300 m above sea level (a.s.l.), 4.8 troops and 62.4–99.8 monkeys are estimated to have existed per km2. In the mountainside zones of 300–900 m a.s.l., the troop density decreased to 1.3–1.6 troops/km2. Since there was no difference in size between the coastal and mountainside troops, population density should decrease with altitude to about 30–36 monkeys per km2. On the other hand, 2.4 troops and about 36 monkeys were estimated to have inhabited per km2 in the mountain summit zone of 900–1,323 m a.s.l. Nature Conservation College  相似文献   

15.
We studied the behavioral thermoregulation of Japanese macaques in two troops that live in the coniferous (1,000-1,200 m in elevation) and coastal forests (0-200 m in elevation) of Yakushima. Frequency of sunbathing, huddling, and microhabitat selection during inactivity was compared. The difference in mean annual air temperature between the forests was more than 7 degrees C. In both forests, when the weather was clear, macaques spent more time being inactive in the sunshine in winter than in autumn. In winter, they huddled more often when it was clear than when cloudy. Microhabitat selection to stay in the sunshine during winter differed between the two forests. In winter, macaques spent more time inactive in open habitats in the coniferous forest and in the trees in the coastal forest than in autumn, respectively. This difference is related to the lower crown height in the coastal forest and the large open habitats (logged area) available only in the coniferous forest. In winter, skin temperature measured by temperature-sensitive transmitters was 1.32-1.71 degrees C higher when sunbathing, and 0.83-4.75 degrees C higher when huddling than staying in the shade without huddling. In winter, the proportion with which they stayed in the sunshine or huddled in winter did not differ between the two forests, in spite of the difference in air temperature. This suggests that Japanese macaques respond to seasonal changes in air temperature, not the absolute temperature, and that they acclimatize themselves to thermal conditions that require behavioral thermoregulation only during the season when thermoregulation is most costly.  相似文献   

16.
The Japanese macaques (Macaca fuscata yakui) on Yakushima Island are an endemic subspecies and are closely related to the population of Kyushu, one of the main islands of Japan. Using feces collected throughout Yakushima Island, we examined mitochondrial DNA (mtDNA) to investigate the phylogeography of Japanese macaques. Six haplotypes were observed for a 203-bp fragment of the mtDNA control region. The nucleotide diversity () was low (0.0021). The genetic divergence within the Yakushima population was lower (0.009) than that among four haplotypes of the Kyushu population (0.015), calculated using Kimuras two-parameter method. The mismatch distribution analysis of the six haplotypes of the Yakushima population suggested that the Yakushima population had experienced a sudden expansion in population size, which could be related to the bottleneck effect. The geographic distribution of the mtDNA haplotypes was not uniform. One haplotype was distributed widely, whereas the other five haplotypes were distributed only in the lowlands. The low genetic diversity and biased distribution are discussed in relation to an environmental crash caused by ancient volcanic activity near this island, which is postulated to have happened about 7,300 years ago, and the delayed recovery of highland vegetation.  相似文献   

17.
A study on population dynamics of wild Formosan macaques (Macaca cyclopis) in Kenting, southern Taiwan, was conducted from March 1985 to August 1990. At first, only one monkey troop was studied. It fissioned in 1987 and both of the daughter troops have been observed since then. Total number of animals increased from 10 to 29 over the years, but the sizes of individual troops have never been more than 20. Seasonality in breeding has been detected: copulations were concentrated in the period from November to January and 75% of all the 28 births occurred between April and June. Time of birth by parous females without offspring from the preceding year was earlier than that of lactating females. Young females gave their first births at 4 or 5 years of age. Total birth rate over the study period was 0.8 infant per female per year. Hunting was the main cause of death while natural mortality rate was low for the animals. There was only one adult male in each troop for most of the time. Troop males in the two daughter troops have been replaced two or three times in the three years by some solitary males that moved around in the area. The reproductive parameters of Formosan macaques in Kenting were found to be more similar to that of rhesus monkeys than to Japanese macaques. And a case of higher reproductive success in a high-ranking matriline was reported.  相似文献   

18.
The fruiting phenology of animal-dispersed plants was observed in a warm temperate, evergreen forest on Yakushima Island. The number of ripe fruits was counted for 22 trees, four lianas and one parasitic epiphyte species with sapfruit. These fruits were consumed by birds and Japanese macaques (Macaca fuscata yakui). Birds with small gapes (e.g. Japanese white-eye [Zosterops japonica]) consumed only small fruit less than 6 mm in diameter, while birds with large gapes (e.g. red-capped green pigeon [Sphenurus formosae]) and Japanese macaques consumed a wide range of fruits from 4 to 16 mm in diameter. The larger animals did not ignore the smaller fruits. Brown-eared bulbul (Hypsipetes amaurotis) and Japanese white-eye were the main consumers of sapfruit in terms of frequency in winter. Some of the observed consumers were year-round residents, but most of the consumers migrated to Yakushima Island from the main islands of Japan to overwinter (from November to March), and their abundance in winter was four times as high as during the rest of the year (from May to October). In 23 of the 27 plant species investigated, sapfruit production coincided with their immigration season, whereas tree species bear capsules and nuts during autumn from September to November. We suggest that sapfruit species set their ripe period to the season when frugivorous birds are most abundant.  相似文献   

19.
Japanese macaques, Macaca fuscata, exhibit an annual reproductive cycle that apparently is maintained intrinsically. Translocation of nine troops to new latitudes within the northern hemisphere has had minimal effect on the timing of birth seasonality in these troops; translocation of one troop to the southern hemisphere has resulted in a 6-month forward displacement of birth seasonality in this troop. Limited available evidence indicates that, in the latitudinal zone between Toimisaki (31°22′N) and Kinkazan (38°17′N), mean birth date in in-situ troops becomes earlier as latitude of troop localities increases; the same relationship between mean birth date and latitude apparently does not apply to in-situ troops south and north of the Toimisaki–Kinkazan latitudinal zone. Within the Toimisaki–Kinkazan latitudinal zone, earlier mean birth dates at higher latitudes may permit infants to achieve an adequate level of development before the earlier onset of poor winter food conditions. South of the Toimisaki–Kinkazan latitudinal zone, winters are relatively mild and may be less of a factor in infant survival; north of this zone, poor winter food conditions persist so long that earlier infant births may be maladaptive. Electronic Publication  相似文献   

20.
A major function of contact calls in nonhuman primates is to maintain spatial cohesion among individuals in a group. The risks of spatial/visual separation from the group are likely to affect auditory contact behavior, in particular by increasing the call rate. We tested whether the risk of separation influences coo call emission by investigating the variation in call rate among behavioral contexts in two wild populations of Japanese macaques (Macaca fuscata). We focused on caller activity and the degree of visibility within the habitat as primary potential factors mediating call rate. We first estimated the habitat visibility of the two research sites at Yakushima Island (YK) and Kinkazan Island (KZ), Japan. The habitat visibility of YK was significantly more restricted than that of KZ. We then compared the call rate of 20 adult and 12 juvenile female macaques between the two wild populations to examine the potential effects of environmental differences. Both populations had a lower call rate during grooming than during feeding and moving, which are behaviors associated to higher interindividual distances. The call rate of YK adult females was significantly greater than that of both juveniles and KZ adult females, independently of activity. The call rate increased as macaques matured in the YK population, but not in the KZ population, suggesting that different developmental processes involved in contact calling of the two populations. Our findings suggest that separation risk influences call rate, and also imply a possibility of social influence that social structure change effects on the call rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号