首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a method for the isolation of enriched fractions of intact Golgi apparatus from neurons of 10- to 12-day-old rat brains. Neurons were prepared according to a modified method of Farooq and Norton [J. Neurochem. 31, 887-894 (1978)]. Golgi-enriched fractions were obtained after centrifugation of postmitochondrial supernatants in a discontinuous sucrose gradient. Golgi fractions 1 and 2, recovered at the interfaces of 28-34% and 34-36% sucrose densities, respectively, were examined with morphometric and enzymatic methods. Morphometric analyses showed that 21-34% of fraction 1 and 11-29% of fraction 2 consisted of intact Golgi apparatus. Lysosomes, mitochondria, ribosomes, and rough endoplasmic reticulum contaminated fraction 1 (6-10%) and fraction 2 (14-26%). Golgi fraction 1 showed a 25- to 65-fold enrichment over neurons of UDP Gal:GlcNAc galactosyltransferase, CMP-sialic acid:lactosylceramide sialyltransferase, and PAPS:cerebroside sulfotransferase activities. Golgi fraction 2 showed a 8- to 23-fold enrichment over neurons of the activities of the above glycolipid- and glycoprotein-synthesizing enzymes. The activities of the possible marker enzymes rotenone-insensitive NADH-cytochrome c reductase, succinate-cytochrome c reductase, and arylsulfatase were low or minimally elevated in the Golgi fractions. A sevenfold enrichment of Na+, K+-ATPase activities was found in the Golgi fractions. This is consistent either with significant plasma membrane contamination or with the presence of this enzyme in the neuronal Golgi apparatus.  相似文献   

2.
Summary The effects of colchicine on ultrastructure of the lactating mammary cell in the rat and goat were studied by electron microscopy. Changes in tissue of the rat were examined over time (1, 2 and 4 h). The goat gland was evaluated by comparing ultrastructure of tissue at the time of maximum milk flow suppression induced by the drug with that of untreated tissue. Colchicine produced notable changes in the tissue of both species: 1) the secretion of lipid droplets and Golgi vesicle contents (exocytosis) was inhibited and the droplets and vesicles became randomly distributed throughout the cell, 2) the Golgi apparatus was significantly reduced in size, 3) casein and lipid continued to be synthesized as evidenced by greater numbers of secretory vesicles and increased sizes of casein micelles and lipid droplets, 4) secretory vesicles showed a propensity to cluster around lipid droplets, 5) isolated microtubules were found occasionally in the control tissue, ordinarily in the vicinity of the Golgi apparatus, but rarely in the colchicine-treated tissue. These observations indicate that colchicine has two effects leading to suppression of exocytosis in the mammary cell: one involves early interference with capacity of secretory vesicle membranes to fuse and a further effect, related to higher concentrations of colchicine, causes intracellular disorganization and loss of polarity. Microtubules were not seen as directly involved in the mechanisms of exocytosis. The secretion of milk fat globules is coupled to exocytosis and thereby is also inhibited by colchicine.Supported in part by grant HL 03622 of the U.S. Public Health Service  相似文献   

3.
A rapid isotonic method for fractionation of nuclei from rat brain is described. This procedure is based on the use of discontinuous colloidal silica gel (Percoll) gradients. We start from a 63,000-g purified nuclear pellet (fraction P3) isolated from gray matter and white matter separately. This is followed by fractionation of fraction P3 in an initial differential centrifugation step on five-step Percoll gradients producing six nuclear fractions designated 1, 2, 3 (gray matter) and 4, 5, 6 (white matter). Fractions 2, 4, and 5 obtained from this centrifugation are heterogeneous. These fractions are subfractionated further under isopycnic conditions using five-step Percoll gradients to yield subfractions 2b, 4b, and 5c. Three methods were used to characterize the nuclear types. First, light and electron microscopic examination was used to identify the nuclei in each preparation and to assess the purity of each preparation. Second, the activities of RNA polymerase I and II were monitored. Third, the protein/DNA ratios of the nuclear fractions were determined. Fraction 1 was enriched in neuronal nuclei; fractions 2b and 4b in astrocytic nuclei; and fractions 3, 5c, and 6 in nuclei of oligodendrocytes. RNA polymerase I and II activity was highest in fraction 1, which also displayed the highest protein/DNA ratio. Electron microscopy showed that the various classes of nuclei are congruent to 90% pure. Therefore, the procedure described here is suitable for obtaining highly purified neuronal and three types of glial nuclei from rat brain.  相似文献   

4.
目的初步探讨高尔基体在小鼠卵母细胞体外发育进程中的作用。方法布雷菲德菌素A(Brefeldin A,BFA)处理小鼠未成熟,成熟卵母细胞,利用特异性标记物阻COP标记高尔基体。激光扫描共聚焦显微镜观察BFA处理对高尔基体产生的影响;同时。观察并比较不同处理组小鼠未成熟/成熟卵母细胞的体外成熟率、孤雌激活率、体外受精率及2-细胞率。结果GV期卵母细胞经BFA处理后,高尔基体的形态和分布发生明显改变。其体外成熟率(2.5%)与对照组(70.4%)比较统计学差异显著(P〈0.001);洗掉BFA后,其体外成熟率(67.2%)与对照组无统计学差异(P〉0.05)。另外,成熟卵母细胞经BFA处理后。其体外受精率及2.细胞率均与对照组差异无统计学意义(P〉0.05)。结论小鼠卵母细胞体外成熟的正常进行需要高尔基体主导的膜运输。而体外受精和受精卵卵裂过程中不需要功能性的高尔基体。  相似文献   

5.
The gastrodermal Golgi apparatus of adult Schistosoma mansoni displays two distinct morphologies. In one type, there is an identifiable cis (forming) face where vesicles from the endoplasmic reticulum fuse to form the cisternae. A morphological change occurs in the cisternae as the trans (emitting) face is approached with the cisternae becoming progressively flattened. The cisternae at the emitting face produce a membrane-bound secretory granule with moderately electron-dense contents and a vacuolar structure that may be analogous to a condensing vacuole as reported in several vertebrate secretory cells. In a second type, vesicles possessing a thicker membrane than those of the transfer vesicles are observed at the emitting face. They are not observed when the secretory granules are present. Several cytochemical markers were used to aid in studying the polarity of the Golgi apparatus. Enzymes studied were thiamine pyrophosphatase (TPPase) (EC 3.6.1.1), nucleoside diphosphatase (NDPase) (EC 3.6.1.6) using uridine diphosphate as a substrate, and nicotinamide adenine dinucleotide phosphatase (NADPase) (EC 3.1.3.2). Reaction products from all enzyme markers were observed in the cisternae and, to some extent, in the transfer vesicles. At times, NADPase and TPPase reaction products were observed in all cisternae and in the transfer vesicles of the Golgi. When this distribution was evident, the latter vesicles were observed in clusters occasionally fusing with lipid-like globules dispersed throughout the gastrodermis. Heterogeneity in cisternae was observed when NDPase, TPPase, and osmium reduction techniques were used. NDPase activity was limited to the middle cisternae while reduced osmium was observed in the outer two cisternae and in some transfer vesicles. TPPase reaction product was also observed in the secretory granules and in the condensing vacuoles. It is hypothesized that a functional bipolarity may be demonstrated by the Golgi. Under certain stress conditions, the forming face of the Golgi may package lysosomal enzymes while the emitting region of the Golgi appears to be responsible for the packaging of the secretory granules. The fusion of transfer vesicles and, at times, secretory granules with lipid-like globules is postulated to represent a mechanism by which enzymes may be transported to the lumen of the cecum.  相似文献   

6.
1998 is the year of the centenary of the discovery of the Golgi apparatus. This event is considered in its historical context: the first cell theory of 1838–1839, the first polemics in cytology and the research on the cell organelles at the turn of the century. The first approaches to clarify the physiological significance of the apparatus is traced from Golgi (1909) to Bowen (1929).  相似文献   

7.
Structure of Golgi apparatus   总被引:2,自引:0,他引:2  
Summary Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.  相似文献   

8.
The central function of heterotrimeric GTP-binding proteins (G proteins) is the transduction of extracellular signals, via membrane receptors, leading to the activation of intracellular effectors. In addition to being associated with the plasma membrane, the α subunits of some of these proteins have also been localized in intracellular compartments. The mRNA of the G-protein inhibitory α subunit 2 (Gαi2) encodes two proteins, Gαi2 and sGi2, by an alternative splicing mechanism. sGi2 differs from Gαi2 in the C-terminal region and localizes in the Golgi in contrast to the plasma membrane localization of Gαi2. In this paper we show that the sequence specific to sGi2 can direct the Golgi localization of other Gαi subunits, but not of the stimulatory subunit Gαs or of a secreted protein. This indicates that, in addition to the sGi2 C-terminus, sequences located elsewhere in the protein are required to determine the Golgi localization. Inside the sGi2 C-terminal region we have identified a 14-amino-acid proline-rich motif which specifies the Golgi localization. Finally, we show that the sGi2 subunit, once activated, leaves the Golgi to be localized in the endoplasmic reticulum.  相似文献   

9.
The imino sugar N-butyldeoxynojirimycin inhibits the N-linked oligosaccharide processing enzymes α-glucosidases I and II, and the ceramide specific glucosyltransferase which catalyses the first step in glucosphingolipid biosynthesis. We have studied the effects of this compound on the ultrastructure of HL-60 cells to identify novel activities of this compound. Treatment of HL-60 cells with this imino sugar results in several morphological changes within the cell, none of which result in cytotoxicity. The plasma membrane stains heavily with potassium ferrocyanide within 30 min following addition of the compound to the medium, and there is then a time dependent involvement of all other intracellular membranes. Secretory granules become enlarged and lose their dense core morphology and appear either empty and vacuolated or have low density contents. However, the most striking effect of NB-DNJ treatment is on the Golgi apparatus. The Golgi exhibits a time-dependent change from typical Golgi morphology to a structure almost completely devoid of cisternae and consisting predominantly of vesicles. All the observed changes are fully reversible on withdrawal of the compound.  相似文献   

10.
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated.  相似文献   

11.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone α-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369–377). Retrieval depends on the HDEL sequence; the α-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

12.
13.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

14.
Phospholipase D has long been implicated in vesicle formation and vesicular transport through the secretory pathway. The Golgi apparatus has been shown to exhibit a plethora of mechanisms of vesicle formation at different stages to accommodate a wide variety of cargo. Phospholipase D has been found on the Golgi apparatus and is regulated by ADP-ribosylation factors which are themselves regulators of vesicle trafficking. Moreover, the product of phospholipase D activity, phosphatidic acid, as well as its degradation product diacylglycerol, have been implicated in vesicle fission and fusion events. Here we summarize recent advances in the understanding of the role of phospholipase D at the Golgi apparatus.  相似文献   

15.
In animal cells, Golgi apparatus is located near the microtubule organizing center (MTOC) and its position is determined partly by 58K protein. By sodium dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immuno-blotting methods, a 58K-like protein has been found in pollen grains and pollen tubes of Lilium davidii. Its molecular weight is very similar to that of the 58K protein of animal cells. By immunofluorescence labeling, under a confocal laser scanning microscope (CLSM), the animal 58K antibody revealed a punctate staining in pollen grains and pollen tubes, which is consistent with the distribution of Golgi apparatus in plant cells. In addition, immuno-gold labeling and transmission electron microscopy showed that the 58K-like protein bound mainly to the membrane of vesicles-like structure near Golgi apparatus. This is the first demonstration of the 58K-like protein in plant cells.  相似文献   

16.
Adenosine Transport by Primary Cultures of Neurons from Chick Embryo Brain   总被引:1,自引:6,他引:1  
Abstract: The transport of adenosine was studied in pure cultures of neurons from chick embryo brain. In order to avoid complications due to adenosine metabolism, the cells were depleted of ATP by treatment with cyanide and iodoacetate prior to incubation with [3H]adenosine. During the 5-25-s periods used for transport assays, no significant adenosine metabolism was detectable. ATP depletion reduced the initial rate of adenosine entry by less than 10%, but blocked over 90% of the radioactivity accumulated by untreated cells after 15 min. Elimination of sodium or chloride from the uptake medium had no effect on adenosine transport activity. The kinetics of adenosine entry into ATP depleted neurons obeyed the Michaelis-Menten relationship and yielded a Km of 13 μM and Vmax of 0.15 nmol/min/mg protein. The neuronal transport system has apparent selectivity for adenosine, since thymidine, inosine, or guanosine gave significant inhibition only at levels 10-100-fold higher than [3H]adenosine. Adenosine derivatives ( N 6-cyclohexyl-, N6-benzyl-, N6-methyl-, and 2-chloroadenosine) were more effective inhibitors; p -nitrobenzylthioinosine and dipyridamole were the most potent compounds found. These results describe a high-affinity, facilitated diffusion system for adenosine in cerebral neurons, which could participate in terminating regulatory actions of this compound in the nervous system.  相似文献   

17.
Cbl is an adaptor protein that is phosphorylated and recruited to several receptor and non-receptor tyrosine kinases upon their activation. After binding to the activated receptor, Cbl plays a key role as a kinase inhibitor and as an E3 ubiquitin ligase, thereby contributing to receptor down-regulation and internalization. In addition, Cbl translocates to intracellular vesicular compartments following receptor activation. We report here that Cbl also associates with Golgi membranes. Confocal immunofluorescence staining of Cbl in a variety of unstimulated cells, including CHO cells, revealed a prominent perinuclear colocalization of Cbl and a Golgi marker. Both the prominent Cbl staining and the Golgi marker were dispersed by brefeldin A. Subcellular fractionation of CHO cells demonstrated that about 10% of Cbl is stably associated with membranes, and that Golgi-enriched membrane fractions produced by isopycnic density centrifugation and free-flow electrophoresis are also enriched in Cbl, relative to other membrane fractions. The membrane-bound Cbl was hyperphosphorylated and it co-immunoprecipitated with endogenous Src. By immunofluorescence, some Src colocalized with Cbl and Golgi markers, and Src, like Cbl, was present in the Golgi-enriched fraction prepared by sequential density centrifugation and free-flow electrophoresis. Transfection of an activated form of Src, but not wild-type Src, increased the amount of Src that co-immunoprecipitated with Cbl, and increased the intensity of Cbl staining on the Golgi. This result, together with the increased tyrosine phosphorylation of the membrane-associated Cbl, suggests that Golgi-associated Cbl could be part of a molecular complex that contains activated Src. The localization and interaction of Src and Cbl at the Golgi and the regulation of the interaction of Cbl with Golgi membrane suggest that this complex may contribute to the regulation of Golgi function.  相似文献   

18.
The mammalian Golgi complex is comprised of a ribbon of stacked cisternal membranes often located in the pericentriolar region of the cell. Here, we report that during apoptosis the Golgi ribbon is fragmented into dispersed clusters of tubulo-vesicular membranes. We have found that fragmentation is caspase dependent and identified GRASP65 (Golgi reassembly and stacking protein of 65 kD) as a novel caspase substrate. GRASP65 is cleaved specifically by caspase-3 at conserved sites in its membrane distal COOH terminus at an early stage of the execution phase. Expression of a caspase-resistant form of GRASP65 partially preserved cisternal stacking and inhibited breakdown of the Golgi ribbon in apoptotic cells. Our results suggest that GRASP65 is an important structural component required for maintenance of Golgi apparatus integrity.  相似文献   

19.
Targeting of proteins to the Golgi apparatus   总被引:5,自引:0,他引:5  
The Golgi apparatus maintains a highly organized structure in spite of the intense membrane traffic which flows into and out of this organelle. Resident Golgi proteins must have localization signals to ensure that they are targeted to the correct Golgi compartment and not swept further along the secretory pathway. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recyclingtrans-Golgi network proteins, peripheral membrane proteins, receptors and viral glycoproteins. Recent studies indicate that there are a number of different Golgi localization signals and mechanisms for retaining proteins to the Golgi apparatus. This review focuses on the current knowledge in this field.  相似文献   

20.
Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune‐dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species‐dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA‐dependent secretory pathway. This led to a general inhibition of protein secretion by PDT‐treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin‐based PDT. Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro‐apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号