首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used a monoclonal antibody (10A8), derived from mice immunized with fractions enriched in Golgi apparatus of rat brain neurons, to isolate an intrinsic membrane sialoglycoprotein of 160 KD from rat brain. By immunoelectron microscopy the sialoglycoprotein, named MG-160, was localized in medical cisternae of the Golgi apparatus of neurons, glia, adenohypophysis, and cultured rat pheochromocytoma (PC 12). The monoclonal antibody (MAb) reacted only with rat tissues. Because the epitope(s) recognized by a monoclonal antibody may be restricted, localization of an antigen by a single MAb may not reflect the extent of the distribution of antigen in various species and tissues. Therefore, to further investigate the presence and localization of MG-160 or of an antigenically related protein in several species and tissues, we used a polyclonal antiserum raised against MG-160 purified by antibody (10A8) affinity chromatography. Immunoblots of crude microsomal fractions from rat brain probed with the antiserum against MG-160 showed two to three prominent bands of approximately 160, 150, and 68 KD. Immunoblots of crude microsomal fractions from human, chicken, and frog brains showed prominent bands of 130-140 and 68 KD. Immunoblots of crude membrane fractions from Saccharomyces cerevisiae showed prominent bands of approximately 110-120 and 80 KD. Light microscopic immunocytochemical studies with frog, chicken, mouse, rat, rabbit, bovine, and human brains and with several other rat and human tissues showed a staining pattern consistent with the Golgi apparatus. Immunoelectron microscopy with rat and human brain and with rat myocardium and pituitary showed prominent and exclusive staining of cis, medial, and occasionally trans cisternae of the Golgi apparatus. The cisternae of the trans Golgi network were not stained. These findings are consistent with the hypothesis that a polypeptide related to MG-160 is present in the Golgi apparatus of several tissues in human, rodents, chicken, and frog and possibly in Saccharomyces cerevisiae. The antiserum to MG-160 represents a reliable reagent for immunohistochemical visualization of the Golgi apparatus in brain and several other human tissues obtained at autopsy, fixed with Bouin's, and embedded in paraffin.  相似文献   

2.
Nucleoside mono-, di- and triphosphatase activities of highly purified endoplasmic reticulum (ER), Golgi apparatus, and plasma membrane fractions of rat liver were compared. The highest rates of hydrolysis were always in ER or plasma membrane. Golgi apparatus activity was intermediate between those of ER and plasma membrane. This relationship was true for both freshly isolated fractions and salt-extracted membranes. Detergent solubilization of the membranes, polyacrylamide gel electrophoresis of the solubilized proteins, and localization of the enzyme activities on the gel revealed bands of enzyme activity which had identical mobilities in all three membrane fractions as well as other bands of activity that occurred only in ER and to a lesser degree in the Golgi apparatus. Antibodies raised against one of the phosphatase bands of plasma membrane which was common to all three membrane fractions cross-reacted with the corresponding phosphatase band in ER and Golgi apparatus. The anti-nucleoside phosphatase was utilized in combination with pulse-chase techniques to investigate the flow kinetics of transfer of newly synthesized enzyme among different cell compartments. Label first appeared in nucleoside phosphatase within the ER. Maximum specific activity was observed at about 5 min after injection of label and was followed by rapid loss of label. This was followed by appearance of label in Golgi apparatus 15 to 25 min after injection of label and by subsequent rapid loss of label. Plasma membranes were labeled last with no evidence of either rapid accumulation of label or of rapid turnover. Flow of nucleoside phosphatase from its site of synthesis and insertion into the membrane at the endoplasmic reticulum to the plasma membrane via the Golgi apparatus is indicated but in a manner whereby a significant fraction of the protein may be processed (removed?) from the membrane concomitant with the flow process.  相似文献   

3.
Neurofilament Proteins in Cultured Chromaffin Cells   总被引:2,自引:1,他引:1  
Antibodies were raised against the 200-kd, 145-kd, and 68-kd subunits of a rat neurofilament preparation. Immunoblots showed that each antibody was specific for its antigen and that it did not cross-react with any of the two other neurofilament polypeptides. Use of the three antibody preparations to stain bovine chromaffin cells in culture by the indirect immunofluorescence technique indicated that the three neurofilament polypeptides are present in chromaffin cells maintained in culture for 3 or 7 days. The three anti-neurofilament antibodies labelled the cells in a similar pattern: very thin filaments specifically localized around the nucleus were observed whereas neurites and growth cones, developed by cultured chromaffin cells, were generally not stained. Some fibroblasts were present in our cultures but they were never stained by any of the neurofilament antibodies. This indicated that the antibodies used do not react with vimentin, the major intermediate filament protein found in fibroblasts. The three neurofilament antibodies were also used to immunoprecipitate specifically three proteins of molecular weights 210 kd, 160 kd, 70 kd from solubilized extracts of cultured chromaffin cells that were radiolabelled with [35S]methionine. These proteins correspond in molecular weight to the neurofilament triplet found in bovine brain. Finally, the presence of neurofilaments in freshly isolated chromaffin cells was tested by immunoblotting using the 68-kd antibody. A 70-kd protein was specifically stained by this antibody, suggesting that neurofilaments are not only present in cultured chromaffin cells but also in the adrenal gland in vivo. It is concluded from these results that chromaffin cells contain completely assembled neurofilaments. This additional neuronal property again illustrates that chromaffin cells are closely related to neurons and therefore represent an attractive model system for the study of functional aspects of adrenergic neurons.  相似文献   

4.
The biosynthesis and membrane topography of the neural cell adhesion molecule L1 have been studied in cerebellar cell cultures by metabolic labeling and immunoprecipitation. Pulse and pulse-chase experiments with [35S]methionine show that L1 is synthesized in its high mol. wt. form, the 200 kd component. The lower mol. wt. components with 40, 80 and 140 K apparent mol. wts. can be generated by proteolysis in intact cellular membranes. Peptide maps generated by protease treatment of L1 isolated from adult mouse brain show that the 80 and 140 kd components are related to the 200 kd component, but not to each other. The 200, 80 and 40 kd components can be biosynthetically phosphorylated. The 140 kd component is not phosphorylated and not released from the surface membrane during tryspinization. The phosphorylated amino acid is serine. In the presence of tunicamycin the 200 kd component is synthesized as a 150 kd protein. Pulse-chase experiments in the presence of tunicamycin indicate that the carbohydrate moieties are predominantly N-glycosidically linked and that the contribution of O-glycosylation is minimal. The carbohydrate moieties are of the complex type as shown by treatment with endoglycosidase H. Since monensin inhibits processing of the carbohydrate moieties, the 200 kd component appears to be transported to the surface membrane via the Golgi apparatus.  相似文献   

5.
D R Ferry  K Kmpf  A Goll    H Glossmann 《The EMBO journal》1985,4(8):1933-1940
The arylazide 1,4-dihydropyridine, [3H]azidopine, binds with high affinity to calcium channels in partially purified guinea-pig skeletal muscle transverse tubule membranes. Upon brief exposure to u.v. light, [3H]azidopine incorporates covalently into transverse tubule membrane proteins, as judged by SDS-PAGE. After alkylation of sulfhydryl groups with N-ethylmaleimide three specifically labelled bands of mol wts. 240 kd, 158 kd and 99 kd are always observed with fluorography after one-dimensional SDS-PAGE. Two other specific bands with mol. wts. of 52 kd and 55 kd, respectively, were sometimes observed. Two-dimensional SDS-PAGE (non-reduced but alkylated in the first dimension and reduced in the second dimension) revealed that the 240-kd band after reduction migrates with a mol. wt. of 99 kd. The 158-kd and 99-kd bands do not change in mobility. It is suggested that [3H]azidopine binds in such a way that the arylazide moiety of the ligand comes into contact with at least three calcium channel components: the A component of mol. wt. 240 kd, the B component of mol. wt. 158 kd and a C component of mol. wt. 99 kd. B and C are non-covalently bonded subunits of the channel, whereas A could be a heterodimer consisting of B and C, linked by disulfide bonds. Subunits of smaller mol. wt. may be also part of the ionic pore. Photolabelling of transverse tubule membranes after high energy irradiation with 10 MeV electrons supports this interpretation.  相似文献   

6.
The M line, which transverses the center of the thick filament region of skeletal muscle sarcomeres, appears to be a complex array of multiple structural elements. To date, two proteins have definitely been shown to be associated with the M line. They are MM-CK, localized in the M 4,4' substriations, and a 165,000-dalton (164 kd) protein, referred to as both M-protein and myomesin. Here we report the positive identification of a third M-line protein of 185 kd. In the course of making monoclonal antibodies (mAbs) against a 165-kd fraction, we also obtained mAbs that bound to the M line of isolated myofibrils as detected by indirect immunofluorescence, but recognized a protein band of 185 kd in immunoblotting experiments with either the original immunogen or low ionic strength myofibril extracts as antigenic targets. The evidence that the 185- and 165-kd proteins are distinct protein species is based on the separation of the two proteins into discrete peaks by ion exchange chromatography, the distinctive patterns of their degradation products, and non-cross-reactivity of any of seven mAbs. These mAbs recognize three unique antigenic determinants on the 185-kd molecule and at least two and probably four sites on the 165-kd molecule as determined from competitive binding and immunofluorescence experiments. To resolve the problem of multiple nomenclature for the 165-kd protein, the 185-kd protein will be referred to as myomesin and the 165-kd protein as M-protein.  相似文献   

7.
Coated and noncoated vesicles participate in cellular protein transport. Both acetylcholine receptors (AChR) and acetylcholinesterase (AChE) are transported via coated vesicles, some of which accumulate beneath the neuromuscular synapse where AChRs cluster. To investigate the mechanisms by which these proteins are transported during postsynaptic remodeling, we purified coated vesicles from the bovine brain via column chromatography (Sephacryl S-1000) and raised monoclonal antibodies to epitopes of the vesicular membranes enriched in AChE. We assayed for AChE (coated vesicle enriched), hexosaminidase (lysosomal contaminants), NADH cytochrome C reductase (mitochondrial containing), and protein and demonstrated electron microscopically using negative staining that the vesicular fraction contained 95% pure coated vesicles. We then injected coated vesicle fractions and the fractions from which the coat was removed intraperitoneally into mice and obtained three monoclonal antibodies: C-33, C-172, and F-22. On immunoblots of purified vesicles and cultured skeletal muscle, mAb C-33 stained a 180 Kd band and mAb C-172 stained a 100 kd band. MAb F-22 stained 50 kd and 55 kd bands and was not characterized further. Immunofluorescent microscopy with C-33 and C-172 revealed punctate fluorescence whose distribution depends upon the stage of myotube development. Four days after plating, myotubes showed punctate fluorescence throughout the myotube, whereas those stained 8 days after plating showed a punctate perinuclear distribution. Myotubes innervated by ciliary neurons show punctate fluorescence limited to the nuclear periphery and most concentrated around nuclei which line up beneath neuronal processes. This differential vesicular distribution, observed during myotube differentiation and innervation, suggests that these vesicles participate in vesicular membrane traffic.  相似文献   

8.
《The Journal of cell biology》1986,103(6):2229-2239
A monoclonal antibody (M3A5), raised against microtubule-associated protein 2 (MAP-2), recognized an antigen associated with the Golgi complex in a variety of non-neuronal tissue culture cells. In double immunofluorescence studies M3A5 staining was very similar to that of specific Golgi markers, even after disruption of the Golgi apparatus organization with monensin or nocodazole. M3A5 recognized one band of Mr approximately 110,000 in immunoblots of culture cell extracts; this protein, designated 110K, was enriched in Golgi stack fractions prepared from rat liver. The 110K protein has been shown to partition into the aqueous phase by Triton X-114 extraction of a Golgi-enriched fraction and was eluted after pH 11.0 carbonate washing. It is therefore likely to be a peripheral membrane protein. Proteinase K treatment of an isolated Golgi stack fraction resulted in complete digestion of the 110K protein, both in the presence and absence of Triton X-100. A the 110K protein is accessible to protease in intact vesicles in vitro, it is presumably located on the cytoplasmic face of the Golgi membrane in vivo. The 110K protein was able to interact specifically with taxol-polymerized microtubules in vitro. These results suggest that the 110K protein may serve to link the Golgi apparatus to the microtubule network and so may belong to a novel class of proteins: the microtubule-binding proteins.  相似文献   

9.
Abstract: Golgi-enriched fractions have been isolated from rat brain of increasing postnatal age and defined by electron microscopy and distribution of marker enzymes. The expression of sialyltransferase activity associated with these fractions has been demonstrated to developmentally decrease and this appeared to be, in part, dependent on endogenous competitive inhibition. The developmental regulation of this activity paralleled the sialylation state of the neural cell adhesion molecule (D2-CAM/N-CAM) and could be demonstrated to be capable of endogenously sialylating this protein in the isolated Golgi fractions. In 12-day-old animals the majority of the transferred [14C]sialic acid was found to be associated with the high-molecular-weight [>200 kilodaltons (kd)] form of D2-CAM/N-CAM, indicative of the protein having been heavily sialylated. Sialylation of the individual D2-CAM/N-CAM polypeptides was also demonstrated in both 12-day and adult animals and transfer was evident only in the 180-kd and 115-kd components and not in the 140-kd component. In contrast, Golgi-enriched fractions prepared from adult animals showed little capability of heavily sialylating D2-CAM/N-CAM to any significant extent.  相似文献   

10.
Immunocytochemistry and polyacrylamide gel electrophoresis have been used to study the distribution of phosphorylated forms of neurofilament antigens in rat brain. Immunostaining of tissue with an antisera produced against phosphatase-sensitive domains of the 200-kilodalton (kd) neurofilament polypeptide showed that phosphorylated forms of this polypeptide were present in virtually all axons and certain somata and dendrites of neurons in different brain regions. Immunoblots of whole brain homogenate or a neurofilament preparation from rat revealed that the affinity-purified anti-200-kd sera used to immunostain tissue labeled the neurofilament-associated 200-kd band in a phosphatase-sensitive manner. Fine structural analysis of this immunoreactivity in tissue showed that whenever the labeled organelle could be identified, it was a microtubule. In contrast, immunoblot analysis of twice-cycled microtubules from porcine brain revealed that microtubules in vitro did not possess the 200-kd antigen that was observed in situ. The results suggest that our antibody recognizes a phosphorylated domain on the neurofilament involved in cross-linking neurofilaments and microtubules, and that in vivo, phosphorylated epitopes of the 200-kd neurofilament polypeptide are capable of associating with microtubules.  相似文献   

11.
The terminal electron transfer enzyme fumarate reductase has been shown to be composed of a membrane-extrinsic catalytic dimer of 69- and 27-kilodalton (kd) subunits and a membrane-intrinsic anchor portion of 15- and 13-kd subunits. We prepared inverted membrane vesicles from a strain carrying the frd operon on a multicopy plasmid. When grown anaerobically on fumarate-containing medium, the membranes of this strain are highly enriched in fumarate reductase. When negatively stained preparations of these vesicles were examined with an electron microscope, they appeared to be covered with knob-like structures about 4 nm in diameter attached to the membrane by short stalks. Treatment of the membranes with chymotrypsin destroyed the 69-kd subunit, leaving the 27-, 15-, and 13-kd subunits bound to the membrane; these membranes appeared to retain remnants of the structure. Treatment of the membranes with 6 M urea removed the 69- and 27-kd subunits, leaving the anchor polypeptides intact. These vesicles appeared smooth and structureless. A functional four-subunit enzyme and the knob-like structure could be reconstituted by the addition of soluble catalytic subunits to the urea-stripped membranes. In addition to the vesicular structures, we observed unusual tubular structures which were covered with a helical array of fumarate reductase knobs.  相似文献   

12.
The glomerular epithelial polyanion is a specialized cell surface component found on renal glomerular epithelial cells (podocytes) that is rich in sialoprotein(s), as detected by staining with cationic dyes (colloidal iron, alcian blue) and wheat germ agglutinin (WGA). We have isolated rat glomeruli and analyzed their protein composition by SDS PAGE in 5-10% gradient gels. When the gels were stained with alcian blue or "Stains All," a single band with an apparent Mr of 140,000 was detected that also stained very prominently with silver, but not with Coomassie Blue. This band predominated in fluorograms of gels of isolated glomeruli that had been labeled in their sialic acid residues by periodate-[3H]borohydride. In lectin overlays, the 140-kilodalton (kd) band was virtually the only one that bound [125I]wheat germ agglutinin, and this binding could be prevented by predigestion with neuraminidase. [125I]Peanut lectin bound exclusively to the 140-kd band after neuraminidase treatment. An antibody was prepared that specifically recognizes only the 140-kd band by immunoprecipitation and immuneoverlay. By immunoperoxidase and immunogold techniques, it was localized to the surface coat of the glomerular epithelium and, less extensively, to that of endothelial cells. When analyzed (after electroelution from preparative SDS gels), the 140-kd band was found to contain approximately 20% hexose and approximately 4.5% sialic acid. These findings indicate that the 140-kd protein is the major sialoprotein of the glomerulus, and it is the only component of glomerular lysates with an affinity for cationic dyes and lectins identical to that defined histochemically for the epithelial polyanion in situ. Since this molecule is a major component of the cell coat or glycocalyx of the podocytes, we have called it "podocalyxin."  相似文献   

13.
《The Journal of cell biology》1984,98(6):2035-2046
Normal, unimmunized mouse serum from several strains (BALB/c, C57/b, DBA/2, NZB, SJL, CD/1) contains an endogenous IgG antibody that localizes to the Golgi complex of rat pancreatic acinar cells. Treatment of pancreatic acini with 5 microM monensin resulted in the swelling and vacuolization of the Golgi cisternae, and in a corresponding annular staining by the mouse serum as observed by immunofluorescence, suggesting that the antigen recognized is on the Golgi complex cisternal membrane. The antiserum did not react with pancreatic secretory proteins, and its binding to smooth microsomal membranes was retained following sodium carbonate washing, supporting a Golgi membrane localization. Advantage was taken of the existence of the endogenous murine antibody for the isolation of monoclonal antibodies directed to the Golgi complex of the rat pancreas. Two antibodies, antiGolgi 1 and antiGolgi 2, are described. Both antibodies are IgMs that recognize integral membrane proteins of the trans-Golgi cisternae, with lighter and patchy staining of the pancreatic lumen membrane, as observed both by light and electron microscopy. AntiGolgi 1 recognizes predominately a protein of molecular weight 103,000- 108,000, whereas antiGolgi 2 shows a strong reaction to a 180-kd band as well as the 103-108-kd protein.  相似文献   

14.
Light chains of sea urchin kinesin identified by immunoadsorption   总被引:6,自引:0,他引:6  
Previous studies with monoclonal antibodies indicate that sea urchin kinesin contains two heavy chains arranged in parallel such that their N-terminal ends fold into globular mechanochemical heads attached to a thin stalk ending in a bipartite tail [Scholey et al., 1989]. In the present, complementary study, we have used the monoclonal antikinesin, SUK4, to probe the quaternary structure of sea urchin (Strongylocentrotus purpuratus) kinesin. Kinesin prepared from sea urchin cytosol sedimented at 9.6 S on sucrose density gradients and consisted of 130-kd heavy chains plus an 84-kd/78 kd doublet (1 mol heavy chain: 1 mol doublet determined by gel densitometry). Low levels of 110-kd and 90-kd polypeptides were sometimes present as well. The 84-kd/78 kd polypeptides are thought to be light chains because they were precipitated from the kinesin preparation at a stoichiometry of one mol doublet per 1 mol heavy chain using SUK4-Sepharose immunoaffinity resins. The 110-kd and 90-kd peptides, by contrast, were removed using this immunoadsorption method. SUK4-Sepharose immunoaffinity chromatography was also used to purify the 130-kd heavy chain and 84-kd/78-kd doublet (1 mol heavy chain: 1 mol doublet) directly from sea urchin egg cytosolic extracts, and from a MAP (microtubule-associated protein) fraction eluted by ATP from microtubules prepared in the presence of AMPPNP but not from microtubules prepared in ATP. The finding that sea urchin kinesin contains equimolar quantities of heavy and light chains, together with the aforementioned data on kinesin morphology, suggests that native sea urchin kinesin is a tetramer assembled from two light chains and two heavy chains.  相似文献   

15.
Preparations enriched in part-smooth (lacking ribosomes), part-rough (with ribosomes) transitional elements of the endoplasmic reticulum when incubated with ATP plus a cytosol fraction responded by the formation of blebbing profiles and approximately 60-nm vesicles. The 60-nm vesicles formed resembled closely transition vesicles in situ considered to function in the transfer of membrane materials between the endoplasmic reticulum and the Golgi apparatus. The transition elements following incubation with ATP and cytosol were resolved by preparative free-flow electrophoresis into fractions of differing electronegativity. The main fraction contained the larger vesicles of the transitional membrane elements, while a less electronegative minor shoulder fraction was enriched in the 60-nm vesicles. If the vesicles concentrated by preparative free-flow electrophoresis were from material previously radiolabeled with [3H]leucine and then added to Golgi apparatus immobilized to nitrocellulose, radioactivity was transferred to the Golgi apparatus membranes. The transfer was rapid (T1/2 of about 5 min), efficient (10-30% of the total radioactivity of the transition vesicle preparations was transferred to Golgi apparatus), and independent of added ATP but facilitated by cytosol. Transfer was specific and apparently unidirectional in that Golgi apparatus membranes were ineffective as donor membranes and endoplasmic reticulum vesicles were ineffective as recipient membranes. Using a heterologous system with transition vesicles from rat liver and Golgi apparatus isolated from guinea pig liver, coalescence of the small endoplasmic reticulum-derived vesicles with Golgi apparatus membranes was demonstrated using immunocytochemistry. Employed were polyclonal antibodies directed against the isolated rat transition vesicle preparations. When localized by immunogold procedures at the electron microscope level, regions of rat-derived vesicles were found fused with cisternae of guinea pig Golgi apparatus immobilized to nitrocellulose strips. Membrane transfer was demonstrated from experiments where transition vesicle membrane proteins were radioiodinated by the Bolton-Hunter procedure. Additionally, radiolabeled peptide bands not present initially in endoplasmic reticulum appeared following coalescence of the derived vesicles with Golgi apparatus. These bands, indicative of processing, required that both Golgi apparatus and transition vesicles be present and did not occur in incubated endoplasmic reticulum preparations or on nitrocellulose strips to which no Golgi apparatus were added.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
《The Journal of cell biology》1983,96(5):1197-1207
Antibodies directed against membrane components of dog pancreas rough endoplasmic reticulum (A-RER) and rat liver Golgi apparatus (A-Golgi) (Louvard, D., H. Reggio, and G. Warren, 1982, J. Cell Biol. 92:92-107) have been applied to cultured rat prolactin (PRL) cells, either normal cells in primary cultures, or clonal GH3 cells. In normal PRL cells, the A-RER stained the membranes of the perinuclear cisternae as well as those of many parallel RER cisternae. The A-Golgi stained part of the Golgi membranes. In the stacks it stained the medial saccules and, with a decreasing intensity, the saccules of the trans side, as well as, in some cells, a linear cisterna in the center of the Golgi zone. It also stained the membrane of many small vesicles as well as that of lysosomelike structures in all cells. In contrast, it never stained the secretory granule membrane, except at the level of very few segregating granules on the trans face of the Golgi zone. In GH3 cells the A-RER stained the membrane of the perinuclear cisternae, as well as that of short discontinuous flat cisternae. The A-Golgi stained the same components of the Golgi zone as in normal PRL cells. In some cells of both types the A-Golgi also stained discontinuous patches on the plasma membrane and small vesicles fusing with the plasma membrane. Immunostaining of Golgi membranes revealed modifications of membrane flow in relation to either acute stimulation of PRL release by thyroliberin or inhibition of basal secretion by monensin.  相似文献   

17.
The release of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A (BFA) action, preceding the movement of Golgi membrane into the ER. ATP depletion also causes the reversible redistribution of the 110-kD protein from Golgi membrane into the cytosol, although no Golgi disassembly occurs. To further define the effects of BFA on the association of the 110-kD protein with the Golgi apparatus we have used filter perforation techniques to produce semipermeable cells. All previously observed effects of BFA, including the rapid redistribution of the 110-kD protein and the movement of Golgi membrane into the ER, could be reproduced in the semipermeable cells. The role of guanine nucleotides in this process was investigated using the nonhydrolyzable analogue of GTP, GTP gamma S. Pretreatment of semipermeable cells with GTP gamma S prevented the BFA-induced redistribution of the 110-kD protein from the Golgi apparatus and movement of Golgi membrane into the ER. GTP gamma S could also abrogate the observed release of the 110-kD protein from Golgi membranes which occurred in response to ATP depletion. Additionally, when the 110-kD protein had first been dissociated from Golgi membranes by ATP depletion, GTP gamma S could restore Golgi membrane association of the 110-kD protein, but not if BFA was present. All of these effects observed with GTP gamma S in semipermeable cells could be reproduced in intact cells treated with AlF4-. These results suggest that guanine nucleotides regulate the dynamic association/dissociation of the 110-kD protein with the Golgi apparatus and that BFA perturbs this process by interfering with the association of the 110-kD protein with the Golgi apparatus.  相似文献   

18.
The fat globule membranes of milk are derived from the apical plasma membrane of the mammary secretory cells. The nature of the membrane proteins, as isolated from cows' milk, has been studied by the use of discontinuous and continuous SDS-gel electrophoresis. Six methods of preparation of milk fat globule membrane suggested by various authors were tested; gel electrophoresis showed that five major bands were present, independent of the method of preparation. The apparent molecular masses of these proteins as determined on SDS-gels (15% T) were 167, 142, 64, 49 and 46 kDa, respectively. The 167 kDa band stained only with periodic acid-Schiff reagent, while the 142 kDa band stained only with Coomassie blue; the last three bands stained with both. Delipidated membranes were extracted stepwise with water, 0.02 M NaCl and 0.6 M NaCl. The 64 kDa band appears to be nearly insoluble, while the bands of 142, 49 and 46 kDa are fractionated by this procedure. The resolution of all of these proteins by electrophoresis was superior to that achieved by molecular sieve chromatography, and so electrophoretic extraction was used to isolate the major proteins. Dansyl chloride derived proteins were used as markers. Amino acid compositions of the recovered proteins were obtained and are compared.  相似文献   

19.
Monoclonal and polyclonal L1 antibodies react by indirect immunofluorescence with the cell surface of cultured tetanus toxin-positive neurons from post-natal cerebella of mice, but not with glial fibrillary acidic protein-positive astrocytes, O4 antigen-positive oligodendrocytes or fibronectin-positive fibroblasts or fibroblast-like cells. During cerebellar development L1 antigen is detectable on tetanus toxin-positive cells as early as embryonic day 13 after 3 days in culture. In sections of the early post-natal cerebellum, L1 antigen is found on pre-migratory neurons in the internal, but not in the external part of the external granular layer. In the adult cerebellum, L1 antigen is predominantly localized in the molecular layer and around Purkinje cells. Fibers in white matter and the granular layer are also L1 antigen-positive. Granule cell bodies and synaptic glomeruli are weakly antigen-positive. Several cell lines derived from neuroblastoma C1300 also express L1 antigen. The antigen is not detectable by enzyme-linked immunosorbent assay in tissue homogenates of liver, kidney, lung, heart, sperm or thymus. With polyclonal L1 antibodies, cross-reactive determinants are found in brains of rat, guinea pig, hamster, chicken, rabbit and man, but not in frog, while monoclonal antibody reacts detectably only with mouse brain. The molecular species recognized by both monoclonal and polyclonal antibodies display two prominent bands by SDS-PAGE under reducing and non-reducing conditions with apparent mol. wts. of 140 and 200 kd. L1 antigen isolated from cultured cerebellar cells consists mainly of a band in the 200-kd range and a faint one at 140 kd. L1 antigen from neuroblastoma N2A shows two bands with slightly higher apparent mol. wts. All molecular forms of L1 antigen can be labeled by [3H]fucose and [3H]glucosamine. Ca2+-independent re-aggregation of cerebellar cells from early post-natal C57BL/6J mice and of the continuous cell line N2A derived from the murine neuroblastoma C1300 is inhibited by Fab fragments of the polyclonal, but not of monoclonal antibody, both of which are known to react with the surface membrane of these cells.  相似文献   

20.
We report a method for the isolation of enriched fractions of intact Golgi apparatus from neurons of 10- to 12-day-old rat brains. Neurons were prepared according to a modified method of Farooq and Norton [J. Neurochem. 31, 887-894 (1978)]. Golgi-enriched fractions were obtained after centrifugation of postmitochondrial supernatants in a discontinuous sucrose gradient. Golgi fractions 1 and 2, recovered at the interfaces of 28-34% and 34-36% sucrose densities, respectively, were examined with morphometric and enzymatic methods. Morphometric analyses showed that 21-34% of fraction 1 and 11-29% of fraction 2 consisted of intact Golgi apparatus. Lysosomes, mitochondria, ribosomes, and rough endoplasmic reticulum contaminated fraction 1 (6-10%) and fraction 2 (14-26%). Golgi fraction 1 showed a 25- to 65-fold enrichment over neurons of UDP Gal:GlcNAc galactosyltransferase, CMP-sialic acid:lactosylceramide sialyltransferase, and PAPS:cerebroside sulfotransferase activities. Golgi fraction 2 showed a 8- to 23-fold enrichment over neurons of the activities of the above glycolipid- and glycoprotein-synthesizing enzymes. The activities of the possible marker enzymes rotenone-insensitive NADH-cytochrome c reductase, succinate-cytochrome c reductase, and arylsulfatase were low or minimally elevated in the Golgi fractions. A sevenfold enrichment of Na+, K+-ATPase activities was found in the Golgi fractions. This is consistent either with significant plasma membrane contamination or with the presence of this enzyme in the neuronal Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号