首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transition state of adenosine nucleosidase (EC 3.2.2.7) isolated from yellow lupin (Lupinus luteus) was determined based upon a series of heavy atom kinetic isotope effects. Adenosine labeled with 13C, 2H, and 15N was analyzed by liquid chromatography/electrospray mass spectrometry to determine kinetic isotope effects. Values of 1.024+/-0.004, 1.121+/-0.005, 1.093+/-0.004, 0.993+/-0.006, and 1.028+/-0.005 were found for [1'-13C], [1'-2H], [2'-2H], [5'-2H], and [9-15N] adenosine, respectively. Using a bond order bond energy vibrational analysis, a transition state consisting of a significantly broken C-N bond, formation of an oxocarbenium ion in the ribose ring, a conformation of C3-exo for the ribose ring, and protonation of the heterocyclic base was proposed. This transition state was found to be very similar to the transition state for nucleoside hydrolase, another purine metabolizing enzyme, isolated from Crithidia fasciculata.  相似文献   

2.
3.
Parikh SL  Schramm VL 《Biochemistry》2004,43(5):1204-1212
Bacterial protein toxins are the most powerful human poisons known, exhibiting an LD(50) of 0.1-1 ng kg(-)(1). A major subset of such toxins is the NAD(+)-dependent ADP-ribosylating exotoxins, which include pertussis, cholera, and diphtheria toxin. Diphtheria toxin catalyzes the ADP ribosylation of the diphthamide residue of eukaryotic elongation factor 2 (eEF-2). The transition state of ADP ribosylation catalyzed by diphtheria toxin has been characterized by measuring a family of kinetic isotope effects using (3)H-, (14)C-, and (15)N-labeled NAD(+) with purified yeast eEF-2. Isotope trapping experiments yield a commitment to catalysis of 0.24 at saturating eEF-2 concentrations, resulting in suppression of the intrinsic isotope effects. Following correction for the commitment factor, intrinsic primary kinetic isotope effects of 1.055 +/- 0.003 and 1.022 +/- 0.004 were observed for [1(N)'-(14)C]- and [1(N)-(15)N]NAD(+), respectively; the double primary isotope effect was 1.066 +/- 0.004 for [1(N)'-(14)C, 1(N)-(15)N]NAD(+). Secondary kinetic isotope effects of 1.194 +/- 0.002, 1.101 +/- 0.003, 1.013 +/- 0.005, and 0.988 +/- 0.002 were determined for [1(N)'-(3)H]-, [2(N)'-(3)H]-, [4(N)'-(3)H]-, and [5(N)'-(3)H]NAD(+), respectively. The transition state structure was modeled using density functional theory (B1LYP/6-31+G) as implemented in Gaussian 98, and theoretical kinetic isotope effects were subsequently calculated using Isoeff 98. Constraints were varied in a systematic manner until the calculated kinetic isotope effects matched the intrinsic isotope effects. The transition state model most consistent with the intrinsic isotope effects is characterized by the substantial loss in bond order of the nicotinamide leaving group (bond order = 0.18, 1.99 A) and weak participation of the attacking imidazole nucleophile (bond order = 0.03, 2.58 A). The transition state structure imparts strong oxacarbenium ion character to the ribose ring even though significant bond order remains to the nicotinamide leaving group. The transition state model presented here is asymmetric and consistent with a dissociative S(N)1 type mechanism in which attack of the diphthamide nucleophile lags behind departure of the nicotinamide.  相似文献   

4.
Silva RG  Schramm VL 《Biochemistry》2011,50(42):9158-9166
The reversible phosphorolysis of uridine to generate uracil and ribose 1-phosphate is catalyzed by uridine phosphorylase and is involved in the pyrimidine salvage pathway. We define the reaction mechanism of uridine phosphorylase from Trypanosoma cruzi by steady-state and pre-steady-state kinetics, pH-rate profiles, kinetic isotope effects from uridine, and solvent deuterium isotope effects. Initial rate and product inhibition patterns suggest a steady-state random kinetic mechanism. Pre-steady-state kinetics indicated no rate-limiting step after formation of the enzyme-products ternary complex, as no burst in product formation is observed. The limiting single-turnover rate constant equals the steady-state turnover number; thus, chemistry is partially or fully rate limiting. Kinetic isotope effects with [1'-(3)H]-, [1'-(14)C]-, and [5'-(14)C,1,3-(15)N(2)]uridine gave experimental values of (α-T)(V/K)(uridine) = 1.063, (14)(V/K)(uridine) = 1.069, and (15,β-15)(V/K)(uridine) = 1.018, in agreement with an A(N)D(N) (S(N)2) mechanism where chemistry contributes significantly to the overall rate-limiting step of the reaction. Density functional theory modeling of the reaction in gas phase supports an A(N)D(N) mechanism. Solvent deuterium kinetic isotope effects were unity, indicating that no kinetically significant proton transfer step is involved at the transition state. In this N-ribosyl transferase, proton transfer to neutralize the leaving group is not part of transition state formation, consistent with an enzyme-stabilized anionic uracil as the leaving group. Kinetic analysis as a function of pH indicates one protonated group essential for catalysis and for substrate binding.  相似文献   

5.
The transition state of the Vmax mutant of AMP nucleosidase from Azotobacter vinelandii [Leung, H. B., & Schramm, V. L. (1981) J. Biol. Chem. 256, 12823-12829] has been characterized by heavy-atom kinetic isotope effects in the presence and absence of MgATP, the allosteric activator. The enzyme catalyzes hydrolysis of the N-glycosidic bond of AMP at approximately 2% of the rate of the normal enzyme with only minor changes in the Km for substrate, the activation constant for MgATP, and the Ki for formycin 5'-phosphate, a tight-binding competitive inhibitor. Isotope effects were measured as a function of the allosteric activator concentration that increases the turnover number of the enzyme from 0.006 s-1 to 1.2 s-1. The kinetic isotope effects were measured with the substrates [1'-3H]AMP, [2'-2H]AMP, [2'-2H]AMP, [9-15N]AMP, and [1',9-14C, 15N]AMP. All substrates gave significant kinetic isotope effects in a pattern that establishes that the reaction expresses intrinsic kinetic isotope effects in the presence or absence of MgATP. The kinetic isotope effect with [9-15N]AMP decreased from 1.034 +/- 0.002 to 1.021 +/- 0.002 in response to MgATP. The [1'-3H]AMP isotope effect increased from 1.086 +/- 0.003 to 1.094 +/- 0.002, while the kinetic isotope effect for [1',9-14C, 15N]AMP decreased from 1.085 +/- 0.003 to 1.070 +/- 0.004 in response to allosteric activation with MgATP. Kinetic isotope effects with [1'-14C]AMP and [2'-2H]AMP were 1.041 +/- 0.006 and 1.089 +/- 0.002 and were not changed by addition of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Luo M  Li L  Schramm VL 《Biochemistry》2008,47(8):2565-2576
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine (2'-deoxy)ribonucleosides to give the corresponding purine base and (2'-deoxy)ribose 1-phosphate as products. Human and bovine PNPs (HsPNP and BtPNP) form distinct transition states despite 87% identity in amino acid sequence. A PNP hybrid was produced by replacing K22 and H104 in HsPNP with the corresponding Glu and Arg residues found in BtPNP. We solved the transition-state structure of E:R-HsPNP (K22E:H104R mutant of HsPNP) using competitive kinetic isotope effects (KIE) and global density functional calculations. An array of PNP transition states was generated from optimized structure candidates with varied C1'-N9, C1'-Ophosphate distances, ribosyl pucker configurations and N7-protonation states. Isotopically labeled [1'-3H], [2'-3H], [1'-14C], [9-15N], [1'-14C, 9-15N] and [5'-3H2]inosines gave intrinsic KIE values of 1.210, 1.075, 1.035, 1.024, 1.065, 1.063 with E:R-HsPNP, respectively. The suite of E:R-HsPNP KIEs match a single structure from the array of PNP transition-state candidates. The transition state of E:R-HsPNP is fully dissociative, N7-protonated hypoxanthine (C1'-N9 distance >or= 3.0 A) with partial participation of phosphate (C1'-Ophosphate distance = 2.26 A), 2'-C-exo-ribosyl ring pucker and the O5'-C5'-C4'-O4' dihedral angle near 60 degrees . The transition state of E:R-HsPNP is altered from the fully dissociative DN*AN character for HsPNP to a late phosphate-associative character. E:R-HsPNP differs from native HsPNP by only two residues over 25 A away from the active site. New interactions caused by the mutations increase the catalytic efficiency of the enzyme for formation of a late transition state with increased participation of the phosphate nucleophile. Dynamic coupling motions from the remote mutations to the catalytic sites are proposed.  相似文献   

7.
The biosynthesis of S-adenosylmethionine occurs in a unique enzymatic reaction in which the synthesis of the sulfonium center results from displacement of the entire polyphosphate chain from MgATP. The mechanism of S-adenosylmethionine synthetase (ATP:L-methionine s-adenosyltransferase) from Escherichia coli has been characterized by kinetic isotope effect and substrate trapping measurements. Replacement of 12C by 14C at the 5' carbon of ATP yields a primary Vmax/Km isotope effect (12C/14C) of 1.128 +/- 0.003 in the absence of added monovalent cation activator (K+). At saturating K+ concentrations (10 mM) the primary isotope effect diminishes slightly to 1.108 +/- 0.003, indicating that the step in the mechanism involving bond breaking at the 5' carbon of MgATP has a small commitment to catalysis at conditions near Vmax. No alpha-secondary 3H isotope effect from [5'-3H]ATP was detected, (1H/3H) = 1.000 +/- 0.002, even in the absence of KCl. There was no significant primary sulfur isotope effect from [35S]methionine at KCl concentrations from 0 to 10 mM. Substitution of the methyl group of methionine with tritium yielded a beta-secondary isotope effect (CH3/C3H3) = 1.009 +/- 0.008 independent of KCl concentration. The reaction of selenomethionine and [5'-14C]ATP gave a primary isotope effect of 1.097 +/- 0.006, independent of KCl concentration. Substrate trapping experiments demonstrated that the step in the mechanism involving bond making to sulfur of methionine does not have a significant commitment to catalysis at 0.25 mM KCl, therefore intrinsic isotope effects were observed. Substrate trapping experiments indicated that the step involving bond breaking at carbon 5' of MgATP has a 10% commitment to catalysis at 0.25 mM KCl. The isotope effects are interpreted in terms of an Sn2-like transition state structure in which bonding of the C5' is symmetric with respect to the departing tripolyphosphate group and the incoming sulfur of methionine. With selenomethionine as substrate an earlier transition state is implicated.  相似文献   

8.
Singh V  Lee JE  Núñez S  Howell PL  Schramm VL 《Biochemistry》2005,44(35):11647-11659
Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes reactions linked to polyamine metabolism, quorum sensing pathways, methylation reactions, and adenine salvage. It is a candidate target for antimicrobial drug design. Kinetic isotope effects (KIEs) were measured on the MTAN-catalyzed hydrolysis of 5'-methylthioadenosine (MTA) to determine the transition state structure. KIEs measured at pH 7.5 were near unity due to the large forward commitment to catalysis. Intrinsic KIEs were expressed by increasing the pH to 8.5. Intrinsic KIEs from MTAs labeled at 1'-(3)H, 1'-(14)C, 2'-(3)H, 4'-(3)H, 5'-(3)H, 9-(15)N, and Me-(3)H(3) were 1.160 +/- 0.004, 1.004 +/- 0.003, 1.044 +/- 0.004, 1.015 +/- 0.002, 1.010 +/- 0.002, 1.018 +/- 0.006, and 1.051 +/- 0.002, respectively. The large 1'-(3)H and small 1'-(14)C KIEs indicate that the Escherichia coli MTAN reaction undergoes a dissociative (D(N)A(N)) (S(N)1) mechanism with little involvement of the leaving group or participation of the attacking nucleophile at the transition state, causing the transition state to have significant ribooxacarbenium ion character. A transition state constrained to match the intrinsic KIEs was located with density functional theory [B3LYP/6-31G(d,p)]. The leaving group (N9) is predicted to be 3.0 A from the anomeric carbon. The small beta-secondary 2'-(3)H KIE of 1.044 corresponds to a modest 3'-endo conformation for ribose and a H1'-C1'-C2'-H2' dihedral angle of 53 degrees at the transition state. Natural bond orbital analysis of the substrate and the transition state suggests that the 4'-(3)H KIE is due to hyperconjugation between the lone pair (n(p)) of O3' and the antibonding (sigma) orbital of the C4'-H4' group, and the methyl-(3)H(3) KIE is due to hyperconjugation between the n(p) of sulfur and the sigma of methyl C-H bonds. Transition state analogues that resemble this transition state structure are powerful inhibitors, and their molecular electrostatic potential maps closely resemble that of the transition state.  相似文献   

9.
Adenosine 5'-phosphate was synthesized with specific heavy atom substitutions to permit measurement of V/K kinetic isotope effects for the N-glycohydrolase activity of the allosteric AMP nucleosidase and the acid-catalyzed solvolysis of these compounds. The effects of allosteric activation on the kinetic isotope effects together with the kinetic mechanism of AMP nucleosidase [DeWolf, W. E., Jr., Emig, F. A., & Schramm, V. L. (1986) Biochemistry 25, 4132-4140] indicate that the kinetic isotope effects are fully expressed. Comparison of individual primary and secondary kinetic isotope effects with combined isotope effects and the isotope effect of the reverse reaction indicated that kinetic isotope effects in AMP nucleosidase arise from a single step in the reaction mechanism. Under these conditions, kinetic isotope effects can be used to interpret transition-state structure for AMP nucleosidase. Changes in kinetic isotope effects occurred as a function of allosteric activator, demonstrating that allosteric activation alters transition-state structure for AMP nucleosidase. Kinetic isotope effects, expressed as [V/K(normal isotope]/[V/K(heavy isotope)], were observed with [2'-2H]AMP (1.061 +/- 0.002), [9-15N]AMP (1.030 +/- 0.003), [1'-2H]AMP (1.045 +/- 0.002), and [1'-14C]AMP (1.035 +/- 0.002) when hydrolyzed by AMP nucleosidase in the absence of MgATP. Addition of MgATP altered the [2'-2H]AMP effect (1.043 +/- 0.002) and the [1'-2H]AMP effect (1.030 +/- 0.003) and caused a smaller decrease of the 14C and 15N effects. Multiple heavy atom substitutions into AMP caused an increase in observed isotope effects to 1.084 +/- 0.004 for [1'-2H,1'-14C]AMP and to 1.058 +/- 0.002 for [9-15N,1'-14C]AMP with the enzyme in the absence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
L M Abell  M H O'Leary 《Biochemistry》1988,27(16):5927-5933
The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k14/k15 = 0.9770 +/- 0.0021, a carbon isotope effect k12/k13 = 1.0308 +/- 0.0006, and a carbon isotope effect for L-[alpha-2H]histidine of 1.0333 +/- 0.0001 at pH 6.3, 37 degrees C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli [Abell, L. M., & O'Leary, M. H. (1988) Biochemistry 27, 3325], the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.  相似文献   

11.
Li L  Luo M  Ghanem M  Taylor EA  Schramm VL 《Biochemistry》2008,47(8):2577-2583
Transition-state structures of human and bovine of purine nucleoside phosphorylases differ, despite 87% homologous amino acid sequences. Human PNP (HsPNP) has a fully dissociated transition state, while that for bovine PNP (BtPNP) has early SN1 character. Crystal structures and sequence alignment indicate that the active sites of these enzymes are the same within crystallographic analysis, but residues in the second-sphere from the active sites differ significantly. Residues in BtPNP have been mutated toward HsPNP, resulting in double (Asn123Lys; Arg210Gln) and triple mutant PNPs (Val39Thr; Asn123Lys; Arg210Gln). Steady-state kinetic studies indicated unchanged catalytic activity, while pre-steady-state studies indicate that the chemical step is slower in the triple mutant. The mutant enzymes have higher affinity for inhibitors that are mimics of a late dissociative transition state. Kinetic isotope effects (KIEs) and computational chemistry were used to identify the transition-state structure of the triple mutant. Intrinsic KIEs from [1'-3H], [1'-14C], [2'-3H], [5'-3H], and [9-15N] inosines were 1.221, 1.035, 1.073, 1.062 and 1.025, respectively. The primary intrinsic [1'-14C] and [9-15N] KIEs indicate a highly dissociative SN1 transition state with low bond order to the leaving group, a transition state different from the native enzyme. The [1'-14C] KIE suggests significant nucleophilic participation at the transition state. The transition-state structure of triple mutant PNP is altered as a consequence of the amino acids in the second sphere from the catalytic site. These residues are implicated in linking the dynamic motion of the protein to formation of the transition state.  相似文献   

12.
Recent studies have shown that Plasmodium falciparum is sensitive to a purine salvage block at purine nucleoside phosphorylase (PNP) and that human PNP is a target for T-cell proliferative diseases. Specific tight-binding inhibitors might be designed on the basis of specific PNP transition state structures. Kinetic isotope effects (KIEs) were measured for arsenolysis of inosine catalyzed by P. falciparum and human purine nucleoside phosphorylases. Intrinsic KIEs from [1'-(3)H]-, [2'-(3)H]-, [1'-(14)C]-, [9-(15)N]-, and [5'-(3)H]inosines were 1.184 +/- 0.004, 1.031 +/- 0.004, 1.002 +/- 0.006, 1.029 +/- 0.006, and 1.062 +/- 0.002 for the human enzyme and 1.116 +/- 0.007, 1.036 +/- 0.003, 0.996 +/- 0.006, 1.019 +/- 0.005, and 1.064 +/- 0.003 for P. falciparum PNPs, respectively. Analysis of KIEs indicated a highly dissociative D(N)A(N) (S(N)1) stepwise mechanism with very little leaving group involvement. The near-unity 1'-(14)C KIEs for both human and P. falciparum PNP agree with the theoretical value for a 1'-(14)C equilibrium isotope effect for oxacarbenium ion formation when computed at the B1LYP/6-31G(d) level of theory. The 9-(15)N KIE for human PNP is also in agreement with theory for equilibrium formation of hypoxanthine and oxacarbenium ion at this level of theory. The 9-(15)N KIE for P. falciparum PNP shows a constrained vibrational environment around N9 at the transition state. A relatively small beta-secondary 2'-(3)H KIE for both enzymes indicates a 3'-endo conformation for ribose and relatively weak hyperconjugation at the transition state. The large 5'-(3)H KIE reveals substantial distortion at the 5'-hydroxymethyl group which causes loosening of the C5'-H5' bonds during the reaction coordinate.  相似文献   

13.
The mechanism of acid and enzymatic hydrolysis of the N-glycosidic bond of AMP has been investigated by fitting experimentally observed kinetic isotope effects [Parkin, D. W., & Schramm, V. L. (1987) Biochemistry (preceding paper in this issue)] to calculated kinetic isotope effects for proposed transition-state structures. The sensitivity of the transition-state calculations was tested by "arying the transition-state structure and comparing changes in the calculated kinetic isotope effects with the experimental values of the isotope effect measurements. The kinetic isotope effects for the acid-catalyzed hydrolysis of AMP are best explained by a transition state with considerable oxycarbonium character in the ribose ring, significant bonding remaining to the departing adenine ring, participation of a water nucleophile, and protonation of the adenine ring. A transition-state structure without preassociation of the water nucleophile cannot be eliminated by the data. Enzymatic hydrolysis of the N-glycosidic bond of AMP by AMP nucleosidase from Azotobacter vinelandii was analyzed in the absence and presence of MgATP, the allosteric activator that increases Vmax approximately 200-fold. The transition states for enzyme-catalyzed hydrolysis that best explain the kinetic isotope effects involve early SN1 transition states with significant bond order in the glycosidic bond and protonation of the adenine base. The enzyme enforces participation of an enzyme-bound water molecule, which has weak bonding to C1' in the transition state. Activation of AMP nucleosidase by MgATP causes the bond order of the glycosidic bond in the transition state to increase significantly. Hyperconjugation in the ribosyl group is altered by enzymatic stabilization of the oxycarbonium ion. This change is consistent with the interaction of an amino acid on the enzyme. Together, these changes stabilize a carboxonium-like transition-state complex that occurs earlier in the reaction pathway than in the absence of allosteric activator. In addition to the allosteric changes that alter transition-state structure, the presence of other inductive effects that are unobserved by kinetic isotope measurements is also likely to increase the catalytic rate.  相似文献   

14.
Werner RM  Stivers JT 《Biochemistry》2000,39(46):14054-14064
The DNA repair enzyme uracil DNA glycosylase catalyzes the first step in the uracil base excision repair pathway, the hydrolytic cleavage of the N-glycosidic bond of deoxyuridine in DNA. Here we report kinetic isotope effect (KIE) measurements that have allowed the determination of the transition-state structure for this important reaction. The small primary (13)C KIE (=1.010 +/- 0.009) and the large secondary alpha-deuterium KIE (=1.201 +/- 0.021) indicate that (i) the glycosidic bond is essentially completely broken in the transition state and (ii) there is significant sp(2) character at the anomeric carbon. Large secondary beta-deuterium KIEs were observed when [2'R-(2)H] = 1.102 +/- 0.011 and [2'S-(2)H] = 1.106 +/- 0.010. The nearly equal and large magnitudes of the two stereospecific beta-deuterium KIEs indicate strong hyperconjugation between the elongated glycosidic bond and both of the C2'-H2' bonds. Geometric interpretation of these beta-deuterium KIEs indicates that the furanose ring adopts a mild 3'-exo sugar pucker in the transition state, as would be expected for maximal stabilization of an oxocarbenium ion. Taken together, these results strongly indicate that the reaction proceeds through a dissociative transition state, with complete dissociation of the uracil anion followed by addition of water. To our knowledge, this is the first transition-state structure determined for enzymatic cleavage of the glycosidic linkage in a pyrimidine deoxyribonucleotide.  相似文献   

15.
[1'-3H]- and [2'-3H]dihydroneopterin triphosphate (NH2TP) were prepared enzymatically from [4-3H]- and [5-3H]glucose and converted to tetrahydrobiopterin (BH4) by an extract from bovine adrenal medulla. The formation of BH4 from both [1'-3H]- and [2'-3H]-NH2TP proceeds with virtually complete loss of the respective tritium label. The breaking of the CH-bond at C-1' is characterized by a kinetic isotope effect of 2.6 +/- 0.5. A smaller kinetic isotope effect of 1.5 +/- 0.2 was found for the breaking of the CH-bond at C-2'.  相似文献   

16.
Crithidia fasciculata cells grown on complex medium with added [8-14C, 5'-3H]inosine or [8-14C,5'-3H]adenosine metabolize greater than 50% of the salvaged nucleosides through a pathway involving N-glycoside bond cleavage. Cell extracts contain a substantial nucleoside hydrolase activity but an insignificant purine nucleoside phosphorylase. The nucleoside hydrolase has been purified 1000-fold to greater than 99% homogeneity from kilogram quantities of C. fasciculata. The enzyme is a tetramer of Mr 34,000 subunits to give an apparent holoenzyme Mr of 143,000 by gel filtration. All of the commonly occurring nucleosides are substrates. The Km values vary from 0.38 to 4.7 mM with purine nucleosides binding more tightly than the pyrimidines. Values of Vmax/Km vary from 3.4 x 10(3) M-1 s-1 to 1.7 x 10(5) M-1 s-1 with the pyrimidine nucleosides giving the larger values. The turnover rate for inosine is 32 s-1 at 30 degrees C. The kinetic mechanism with inosine as substrate is rapid equilibrium with random product release. The hydrolytic reaction can be reversed to give an experimental Keq of 106 M with H2O taken as unity. The product dissociation constants for ribose and hypoxanthine are 0.7 and 6.2 mM, respectively. Deoxynucleosides or 5'-substituted nucleosides are poor substrates or do not react, and are poor inhibitors of the enzyme. The enzyme discriminates against methanol attack from solvent during steady-state catalysis, indicating the participation of an enzyme-directed water nucleophile. The pH profile for inosine hydrolysis gives two apparent pKa values of 6.1 with decreasing Vmax/Km values below the pKa and a plateau at higher pH values. These effects are due to the pH sensitivity of the Vmax values, since Km is independent of pH. The pH profile implicates two negatively charged groups which stabilize a transition state with oxycarbonium character.  相似文献   

17.
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of 6-oxypurine (2'-deoxy)ribonucleosides, generating (2-deoxy)ribose 1-phosphate and the purine base. Transition-state models for inosine cleavage have been proposed with bovine, human, and malarial PNPs using arsenate as the nucleophile, since kinetic isotope effects (KIEs) are obscured on phosphorolysis due to high commitment factors. The Phe200Gly mutant of human PNP has low forward and reverse commitment factors in the phosphorolytic reaction, permitting the measurement of competitive intrinsic KIEs on both arsenolysis and phosphorolysis of inosine. The intrinsic 1'-(14)C, 1'-(3)H, 2'-(2)H, 9-(15)N, and 5'-(3)H(2) KIEs for inosine were measured for arsenolysis and phosphorolysis. Except for the remote 5'-(3)H(2), and some slight difference between the 2'-(2)H KIEs, all isotope effects originating in the reaction coordinate are the same within experimental error. Hence, arsenolysis and phosphorolysis proceed through closely related transition states. Although electrostatically similar, the volume of arsenate is greater than phosphate and supports a steric influence to explain the differences in the 5'-(3)H(2) KIEs. Density functional theory calculations provide quantitative models of the transition states for Phe200Gly human PNP-catalyzed arsenolysis and phosphorolysis, selected upon matching calculated and experimental KIEs. The models confirm the striking resemblance between the transition states for the two reactions.  相似文献   

18.
Chorismate synthase (EC 4.6.1.4) is the shikimate pathway enzyme that catalyzes the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate. The enzyme reaction is unusual because it involves a trans-1,4 elimination of the C-3 phosphate and the C-6 proR hydrogen and it has an absolute requirement for reduced flavin. Several mechanisms have been proposed to account for the cofactor requirement and stereochemistry of the reaction, including a radical mechanism. This paper describes the synthesis of [4-(2)H]EPSP and the observation of kinetic isotope effects using this substrate with both Neurospora crassa and Escherichia coli chorismate synthases. The magnitude of the effects were (D)(V) = 1.08 +/- 0.01 for the N. crassa enzyme and 1.10 +/- 0.02 on phosphate release under single-turnover conditions for the E. coli enzyme. The effects are best rationalised as substantial secondary beta isotope effects. It is most likely that the C(3)-O bond is cleaved first in a nonconcerted E1 or radical reaction mechanism. Although this study alone cannot rule out a concerted E2-type mechanism, the C(3)-O bond would have to be substantially more broken than the proR C(6)-H bond in a transition state of such a mechanism. Importantly, although the E. coli and N. crassa enzymes have different rate limiting steps, their catalytic mechanisms are most likely to be chemically identical. Copyright 2000 Academic Press.  相似文献   

19.
Zhang Y  Schramm VL 《Biochemistry》2011,50(21):4813-4818
Orotate phosphoribosyltransferases (OPRTs) form and break the N-ribosidic bond to pyrimidines by way of ribocation-like transition states (TSs) and therefore exhibit large α-secondary 1'-(3)H k(cat)/K(m) kinetic isotope effects (KIEs) [Zhang, Y., and Schramm, V. L. (2010) J. Am. Chem. Soc. 132, 8787-8794]. Substrate binding isotope effects (BIEs) with OPRTs report on the degree of ground-state destabilization for these complexes and permit resolution of binding and transition-state effects from the k(cat)/K(m) KIEs. The BIEs for interactions of [1'-(3)H]orotidine 5'-monophosphate (OMP) with the catalytic sites of Plasmodium falciparum and human OPRTs are 1.104 and 1.108, respectively. These large BIEs establish altered sp(3) bond hybridization of C1' toward the sp(2) geometry of the transition states upon OMP binding. Thus, the complexes of these OPRTs distort OMP part of the way toward the transition state. As the [1'-(3)H]OMP k(cat)/K(m) KIEs are approximately 1.20, half of the intrinsic k(cat)/K(m) KIEs originate from BIEs. Orotidine, a slow substrate for these enzymes, binds to the catalytic site with no significant [1'-(3)H]orotidine BIEs. Thus, OPRTs are unable to initiate ground-state destabilization of orotidine by altered C1' hybridization because of the missing 5'-phosphate. However the k(cat)/K(m) KIEs for [1'-(3)H]orotidine are also approximately 1.20. The C1' distortion for OMP happens in two steps, half upon binding and half on going from the Michaelis complex to the TS. With orotidine as the substrate, there is no ground-state destabilization in the Michaelis complexes, but the C1' distortion at the TS is equal to that of OMP. The large single barrier for TS formation with orotidine slows the rate of barrier crossing.  相似文献   

20.
B J Bahnson  V E Anderson 《Biochemistry》1991,30(24):5894-5906
Determining the sequence of bond cleavages, and consequently the nature of intermediates, in enzyme-catalyzed reactions is a major goal of mechanistic enzymology. When significant primary isotope effects on V/K are observed for two different bond cleavages, both bonds may be broken in the same transition state or they can reflect two different transition states that are of nearly identical energy and consequently both are partially rate limiting. For the crotonase-catalyzed dehydration of 3-hydroxybutyrylpantetheine, the primary D(V/K) and 18(V/K) are 1.60 and 1.053 [Bahnson, B. J., & Anderson, V. E. (1989) Biochemistry 28, 4173-4181], respectively. In this case, double isotope effects can discriminate between the two possibilities [Hermes, J. D., Roeske, C. A., O'Leary, M. H., & Cleland, W. W. (1982) Biochemistry 21, 5106-5114; Belasco, J. G., Albery, W. J., & Knowles, J. R. (1983) J. Am. Chem. Soc. 105, 2475-2477]. The ratio of the alpha-secondary D(V/K) for the hydration of crotonylpantetheine catalyzed by crotonase in H2O and D2O has been determined to be 1.003 +/- 0.006. The invariance of the alpha-secondary effect where the chemical reaction is completely rate determining requires that both bond cleavages be concerted or that the substitution of 2H at the primary position not significantly alter the partitioning of a hypothetical carbanion. The observation of a solvent discrimination isotope effect determined from the relative incorporation of 2H from 50% D2O of 1.60 +/- 0.03, identical with the primary D(V/K), and the determination that the rate of exchange of the abstracted proton with solvent proceeds at less than 3% of the overall reaction rate also fail to provide evidence for a carbanion intermediate and are consistent with a concerted reaction. Identical primary D(V/K)s determined in H2O and D2O indicate that there is not a significant solvent isotope effect on C-O bond cleavage. The isotope ratios determined in these studies were performed by negative ion chemical ionization whole molecule mass spectrometry of the pentafluorobenzyl esters, a new method whose validity is established by comparison with previously determined kinetic and equilibrium isotope effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号