首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FLAGELLAR REGENERATION IN PROTOZOAN FLAGELLATES   总被引:44,自引:30,他引:14       下载免费PDF全文
The flagella of populations of three protozoan species (Ochromonas, Euglena, and Astasia) were amputated and allowed to regenerate. The kinetics of regeneration in all species were characterized by a lag phase during which there was no apparent flagellar elongation; this phase was followed by elongation at a rate which constantly decelerated as the original length was regained. Inhibition by cycloheximide applied at the time of flagellar amputation showed that flagellar regeneration was dependent upon de novo protein synthesis. This was supported by evidence showing that a greater amount of leucine was incorporated into the proteins of regenerating than nonregenerating flagella. The degree of inhibition of flagellar elongation observed with cycloheximide depended on how soon after flagellar amputation it was applied: when applied to cells immediately following amputation, elongation was almost completely inhibited, but its application at various times thereafter permitted considerable elongation to occur prior to complete inhibition of flagellar elongation. Hence, a sufficient number of precursors were synthesized and accumulated prior to addition of cycloheximide so that their assembly (elongation) could occur for a time under conditions in which protein synthesis had been inhibited. Evidence that the site of this assembly may be at the tip of the elongating flagellum was obtained from radioautographic studies in which the flagella of Ochromonas were permitted to regenerate part way in the absence of labeled leucine and to complete their regeneration in the presence of the isotope. Possible mechanisms which may be operating to control flagellar regeneration are discussed in light of these and other observations.  相似文献   

2.
To study the mechanisms responsible for the regulation of flagellar length, we examined the effects of colchicine and Cytochalasin D (CD) on the growth and maintenance of Chlamydomonas flagella on motile wild type cells as well as on pf 18 cells, whose flagella lack the central microtubules and are immobile. CD had no effect on the regeneration of flagella after deflagellation but it induced fully assembled flagella to shorten at an average rate of 0.03 microns-min. Cells remained fully motile in CD and even stubby flagella continued to move, indicating that flagellar shortening did not selectively disrupt machinery necessary for motility. To observe the effects of the drug on individual cells, pf 18 cells were treated with CD and flagella on cells were monitored by direct observation over a 5-hour period. Flagella on control pf 18 cells maintained their initial lengths throughout the experiment but flagella on CD-treated cells exhibited periods of elongation, shortening, and regrowth suggestive of the dynamic behavior of cytoplasmic microtubules observed in vitro and in vitro. Cells behaved individually, with no two cells exhibiting the same flagellar behavior at any given time although both flagella on any single cell behaved identically. The rate of drug-induced flagellar shortening and elongation in pf 18 cells varied from 0.08 to 0.17 microns-min-1, with each event occurring over 10-60-min periods. Addition of colchicine to wild type and pf 18 cells induced flagella to shorten at an average rate of 0.06 microns-min-1 until the flagella reached an average of 73% of their initial length, after which they exhibited no further shortening or elongation. Cells treated with colchicine and CD exhibited nearly complete flagellar resorption, with little variation in flagellar length among cells. The effects of these drugs were reversible and flagella grew to normal stable lengths after drug removal. Taken together, these results show that the distal half to one-third of the Chlamydomonas flagellum is relatively unstable in the presence of colchicine but that the proximal half to two-thirds of the flagellum is stable to this drug. In contrast to colchicine, CD can induce nearly complete flagellar microtubule disassembly as well as flagellar assembly. Flagellar microtubules must, therefore, be inherently unstable, and flagellar length is stabilized by factors that are sensitive, either directly or indirectly, to the effects of CD.  相似文献   

3.
4.
Chlamydomonas reinhardtii, a bi-flagellated green alga, is a model organism for studies of flagella or cilia related activities including cilia-based signaling, flagellar motility and flagellar biogenesis. Calcium has been shown to be a key regulator of these cellular processes whereas the signaling pathways linking calcium to these cellular functions are less understood. Calcium-dependent protein kinases (CDPKs), which are present in plants but not in animals, are also present in ciliated microorganisms which led us to examine their possible functions and mechanisms in flagellar related activities. By in silico analysis of Chlamydomonas genome we have identified 14 CDPKs and studied one of the flagellar localized CDPKs – CrCDPK3. CrCDPK3 was a protein of 485 amino acids and predicted to have a protein kinase domain at the N-terminus and four EF-hand motifs at the C-terminus. In flagella, CrCDPK3 was exclusively localized in the membrane matrix fraction and formed an unknown 20 S protein complex. Knockdown of CrCDPK3 expression by using artificial microRNA did not affect flagellar motility as well as flagellar adhesion and mating. Though flagellar shortening induced by treatment with sucrose or sodium pyrophosphate was not affected in RNAi strains, CrCDPK3 increased in the flagella, and pre-formed protein complex was disrupted. During flagellar regeneration, CrCDPK3 also increased in the flagella. When extracellular calcium was lowered to certain range by the addition of EGTA after deflagellation, flagellar regeneration was severely affected in RNAi cells compared with wild type cells. In addition, during flagellar elongation induced by LiCl, RNAi cells exhibited early onset of bulbed flagella. This work expands new functions of CDPKs in flagellar activities by showing involvement of CrCDPK3 in flagellar biogenesis in Chlamydomonas .  相似文献   

5.
Exposure of the quadriflagellate Polytomella to hydrostatic pressure was shown to result in the internalization of intact flagellar axonemes. During recovery from the pressure treatment the axonemes were disassembled concurrent with flagellar regeneration. When flagella were amputated partial regeneration occurred in the presence of cycloheximide, suggesting the presence of a limiting available pools of flagellar precursors. After a second amputation in the continued presence of cycloheximide little or no regeneration occurred, indicating depletion of the pool. However, if internalized axonemes were available, as well as the precursor pool, full-length flagella regenerated in cycloheximide. When the pool had been depleted and internalized axonemes were present, flagella regenerated to a length equal to the initial length of the internalized axonemes. We conclude that materials resulting from the disassembly of the pressure internalized axonemes are reutilized in regenerating new flagella.  相似文献   

6.
The behaviour of a pool of flagellar precursors, assayed by the ability of cells to regenerate flagella in the absence of de novo protein synthesis, has been examined during organelle morphogenesis in the biflagellate alga Chlamydomonas. The results demonstrate that flagellar elongation can continue even when this pool is apparently empty and suggest that 2 sources of precursors are available to the regenerating flagella: those pre-existing in the cellular pool and those synthesized de novo. Further evidence for this was obtained by subjecting regenerating cells to pulses of cycloheximide. Cells exposed to this drug during the first 60 min post deflagellation formed only half-length (5-mum) flagella, whereas a pulse administered after this point allowed the formation of longer flagella and suggested that some de novo protein synthesis was required for the formation of full-length flagella, although it was not a prerequisite for the initiation of regeneration. In addition, it was found that, subsequent to the removal of the cycloheximide, flagellar regeneration did not recommence immediately, but was delayed for a period of approximately 45 min, irrespective of length of flagella formed prior to drug inhibition. The nature of this cycloheximide-induced delay is unclear and certain alternatives, based on the exhaustion of structural/regulatory components are considered. Although it is not possible to distinguish between these alternatives, tubulin is not the limiting component, since a pool of this protein is present when flagellar elongation is prevented by cycloheximide.  相似文献   

7.
Mating between gametes of the biflagellated unicellular green alga Chlamydomonas reinhardi consists of several events culminating in zygote formation. Initially, the cells agglutinate by their flagellar tips. This is followed by pairing, cell wall loss, and cell fusion. Here we report on the relationship between the length of the flagellum, and the cells' ability to agglutinate, undergo cell wall loss (as measured by medium carbohydrate accumulation), and to form zygotes. We found that deflagellated gametes regained the potential for sexual agglutination when the flagella had regenerated to less than 3 μm (compared to the full length flagella of approx. 11 μm), while medium carbohydrate appeared only after the flagella had reached an average length greater than 5 μm. By inhibiting flagellar regeneration with cycloheximide or colchicine, we determined that carbohydrate release is related to the length of the flagellum and not to the time after deflagellation. A flagellar length dependence similar to that of carbohydrate release was also observed when we measured the relationship between the gametes' ability to fuse and flagellar length.  相似文献   

8.
The biflagellate somatic cells of Volvox carteri f. nagariensis lyengar exhibit an asymmetric pattern of flagellar development. Initiallt each somatic cell has two short (4 μm) flagella but after several hours one flagellum on each cell elongates unitl it reaches a length of 12 μm. Due to the regular arrangement of somatic cells in the Volvox spheroid it is apparent that the same flagellum on each somatic is the first to elongale. The asymmetric flagellar length is maintained for about 8 h after which the second flagellum on each somatic cell elongates. When the second flagellum attains the same length (12 μm) as the first flagellum, both flagella elongale at the same rate until reaching a final length of 22 μm. Experimental removal of somatic cell flagella results in their regeneration. Somatis cells regenerate both flagella simultaneously and full length flagella are produced in about 2 h. The intial rate of flagellar regeneration is about ten times faster than the intial rate of flagllar growth in development. Cycloheximide, an inhibitor of protein synthesis, has no effect on the initial rate of flagellar regeneration but the flagella produced in the presence of the drug are half the length of flagella produced in its absence. Somatic cells are able to regenerate flagella up to the time of α and β tubulin, the major structural proteins of the flagellar axoneme, and other cellular proteins.  相似文献   

9.
Flagellar regeneration after experimental amputation was studied in synchronized axenic cultures of the scaly green flagellateTetraselmis striata (Prasinophyceae). After removal of flagella by mechanical shearing, 95% of the cells regrow all four flagella (incl. the scaly covering) to nearly full length with a linear velocity of 50 nm/min under standard conditions. Flagellar regeneration is independent of photosynthesis (no effect of DCMU; the same regeneration rate in the light or in the dark), but depends on de novo protein synthesis: cycloheximide at a low concentration (0.35 μM) blocks flagellar regeneration reversibly. No pool of flagellar precursors appears to be present throughout the flagellated phase of the cell cycle. A transient pool of flagellar precursors, sufficient to generate 2.5 μm of flagellar length, however, develops during flagellar regeneration. Tunicamycin (2 μg/ml) inhibits flagellar regeneration only after a second flagellar amputation, when flagella reach only one third the length of the control. Flagellar regeneration inT. striata differs considerably from that ofChlamydomonas reinhardtii and represents an excellent model system for the study of synchronous Golgi apparatus (GA) activation, and transport and exocytosis of GA-derived macromolecules (scales).  相似文献   

10.
Flagellar assembly requires coordination between the assembly of axonemal proteins and the assembly of the flagellar membrane and membrane proteins. Fully grown steady-state Chlamydomonas flagella release flagellar vesicles from their tips and failure to resupply membrane should affect flagellar length. To study vesicle release, plasma and flagellar membrane surface proteins were vectorially pulse-labeled and flagella and vesicles were analyzed for biotinylated proteins. Based on the quantity of biotinylated proteins in purified vesicles, steady-state flagella appeared to shed a minimum of 16% of their surface membrane per hour, equivalent to a complete flagellar membrane being released every 6 hrs or less. Brefeldin-A destroyed Chlamydomonas Golgi, inhibited the secretory pathway, inhibited flagellar regeneration, and induced full-length flagella to disassemble within 6 hrs, consistent with flagellar disassembly being induced by a failure to resupply membrane. In contrast to membrane lipids, a pool of biotinylatable membrane proteins was identified that was sufficient to resupply flagella as they released vesicles for 6 hrs in the absence of protein synthesis and to support one and nearly two regenerations of flagella following amputation. These studies reveal the importance of the secretory pathway to assemble and maintain full-length flagella.  相似文献   

11.
The regeneration kinetics of Chlamydomonas reinhardtii mutants TS-6 and TS-79, whose flagella were mechanically amputated, indicated that the flagellar precursor in cytoplasm was used for regeneration when cycloheximide was present. The TS-6 cells rendered nonflagellate by regression at 35 C did not regenerate in the presence of cycloheximide, indicating that the precursor was inactivated by the high temperature. Neither mutant was able to use the absorbed flagellar components for regeneration in the presence of cycloheximide.  相似文献   

12.
The mode of action of trifluralin is known to include disruption of cell division in root meristems by causing an absence of spindle microtubules. It has also been shown that trifluralin binds to tubulin isolated and purified from Chlamydomonas flagella. In this paper the kinetics of in vivo flagellar regeneration was used as a model to determine the influence of trifluralin on tubulin assembly. Chlamydomonas cells were grown in synchronous culture using a 12 h light-dark cycle. At 3 h into the light cycle the cells were subjected to shear force to induce flagellar abortion. Flagellar regeneration, in the presence of varying concentrations of trifluralin, was observed by Nomarski interference microscopy. After 1.5 h, trifluralin concentrations below 0.1 μM had not affected the regeneration rate, while concentrations above 5 μM prevented the onset of regeneration. As the concentration between 0.1 and 5 μM was increased, the final length of all flagella decreased. Using combinations of cycloheximide and trifluralin it was determined that trifluralin did not influence tubulin synthesis, and removing trifluralin only restored 50% of the regeneration capacity present at the beginning of treatment. By comparing groups of cells where the tubulin pool was depleted or present, it was found that trifluralin prevented assembly rather than causing a breakdown of previously assembled flagella. The research reported here supports the theory that the mechanism of action of trifluralin is an interaction of trifluralin and tubulin in a way that prevents tubulin assembly into spindle microtubules.  相似文献   

13.
The regeneration kinetics of Chlamydomonas reinhardtii mutants TS-6 and TS-79, whose flagella were mechanically amputated, indicated that the flagellar precursor in cytoplasm was used for regeneration when cycloheximide was present. The TS-6 cells rendered nonflagellate by regression at 35 C did not regenerate in the presence of cycloheximide, indicating that the precursor was inactivated by the high temperature. Neither mutant was able to use the absorbed flagellar components for regeneration in the presence of cycloheximide.  相似文献   

14.
A relatively simple immunochemical procedure for estimating flagellar protein was developed. This procedure involved measuring the binding of purified, radioactively labeled, antiflagellar antibodies to bacteria. The assay was used to determine the requirements for ribonucleic acid (RNA) and protein synthesis during flagellar regeneration in Bacillus subtilis. Immediate inhibition of flagella development was observed when chloramphenical or puromycin was added to cells. This inhibition indicated the absence of a large pool of flagella precursors that could be assembled in the absence of protein synthesis. When the cells were starved for uracil or treated with actinomycin D to inhibit RNA synthesis, the ability of the cells to regenerate flagella decayed with a half-life of 5.5 min. When B. subtilis auxotrophs were starved for tryptophan, they continued to synthesize flagella, although this process was also inhibited by actinomycin D. On the basis of these results, we concluded that (i) the system involved in flagellar regeneration does not have unusual metabolic stability, (ii) regeneration requires both concomitant protein and RNA syntheses, and (iii) B. subtilis continues to synthesize messenger RNA during tryptophan starvation.  相似文献   

15.
Synthesis of new proteins is required to regenerate full length Chlamydomonas flagella after deflagellation. Using gametes, which have a low basal level of protein synthesis, it has been possible to label and detect the synthesis of many flagellar proteins in whole cells. The deflagellation-induced synthesis of the tubulins, dyneins, the flagellar membrane protein, and at least 20 other proteins which co- migrate with proteins in isolated axonemes, can be detected in gamete cytoplasm, and the times of initiation and termination of synthesis for each of the proteins can be studied. The nature of the signal that stimulates the cell to initiate flagellar protein synthesis is unknown. Flagellar regeneration and accompanying pool depletion are not necessary for either the onset or termination of flagellar protein synthesis, because colchicine, which blocks flagellar regeneration, does not change the pattern of proteins synthesized in the cytoplasm after deflagellation or the timing of their synthesis. Moreover, flagellar protein synthesis is stimulated after cells are chemically induced to resorb their flagella, indicating that the act of deflagellation itself is not necessary to stimulate synthesis. Methods were defined for inducing the cells to resorb their flagella by removing Ca++ from the medium and raising the concentration of K+ or Na+. The resorption was reversible and the flagellar components that were resorbed could be re-utilized to assemble flagella in the absence of protein synthesis. This new technique is used in this report to study the control of synthesis and assembly of flagella.  相似文献   

16.
CILIA REGENERATION IN TETRAHYMENA AND ITS INHIBITION BY COLCHICINE   总被引:27,自引:18,他引:9       下载免费PDF全文
The cilia of Tetrahymena were amputated by the use of a procedure in which the cells remained viable and regenerated cilia. Deciliated cells were nonmotile, and cilia regeneration was assessed by scoring the percentage of motile cells at intervals following deciliation. After a 30-min lag, the deciliated cells rapidly recovered motility until more than 90% of the cells were motile at 70 min after amputation. Cycloheximide inhibited both protein synthesis and cilia regeneration. This indicated that cilia formation in Tetrahymena was dependent on protein synthesis after amputation. Conversely, colchicine was found to inhibit cilia regeneration without affecting either RNA or protein synthesis. This observation suggested the action of colchicine to be an interference with the assembly of ciliary subunit proteins. The finding that colchicine binds to microtubule protein subunits isolated from cilia and flagella (13) supports this possibility. The potential of the colchicine-blocked cilia-regenerating system in Tetrahymena for studying the assembly of microtubule protein subunits during cilia formation and for isolating ciliary precursor proteins is discussed.  相似文献   

17.
Almost all eukaryotic cells form cilia/flagella, maintain them at their genetically specified lengths, and shorten them. Here, we define the cellular mechanisms that bring about shortening of flagella prior to meiotic cell division and in response to environmental cues in the biflagellated green alga Chlamydomonas. We show that the flagellar shortening pathway is distinct from the one that enforces transient shortening essential for length control. During flagellar shortening, disassembly of the axoneme is stimulated over the basal rate, and the rate of entry into flagella of intraflagellar transport (IFT) particles is increased. Moreover, the particles entering the disassembling flagella lack cargo. Thus, flagellar shortening depends on the interplay between dynamic properties of the axoneme and the IFT machinery; a cell triggered to shorten its flagellum activates disassembly of the axoneme and stimulates entry into the flagellum of IFT particles possessing empty cargo binding sites available to retrieve the disassembled components.  相似文献   

18.
Previous studies have shown that cells in the 6-day old embryonic chick lens epithelium elongate in tissue culture. In the present study, the time course of elongation during the 1st day of cultivation has been examined histologically. Cultured epithelia were also treated with cycloheximide or colchicine in order to determine if cell elongation depends on new protein synthesis and on the utilization of microtubules, respectively. In the first 5 hr of culture, the mean cell length increased from 11 µ to 21 µ. Subsequently, elongation was slower; the mean cell length was 28 µ after 24 hr in culture. Continuous exposure to cycloheximide did not inhibit the initial doubling of cell length, but did prevent further elongation. By contrast, colchicine inhibited elongation almost immediately. When added after the cell length had doubled, cycloheximide and colchicine each inhibited further elongation; the treated cells remained columnar. Radioautographic and electrophoretic tests showed that protein synthesis was not appreciably affected by colchicine, but was suppressed by cycloheximide. Electron microscopic examination revealed that microtubules oriented along surface membranes were present in epithelia cultured with serum alone and with cycloheximide, but not in those incubated with colchicine. These results indicate that the early stages of cell elongation in the cultured lens epithelium require an initial assembly and organization of preexisting microtubular elements and that continued elongation depends, in addition, on the de novo synthesis of protein, possibly microtubule protein.  相似文献   

19.
The unicellular green alga Spermatozopsis similis Preisig et Melkonian bears two flagella of unequal length. After deflagellation, cells first regenerated the longer flagellum to about one third of its original length, before the shorter flagellum started to develop. Growth rates were similar for both flagella. Thus, the length difference between both flagella was restored by a lag-phase during regeneration of the shorter flagellum. To explain the lag-phase, we have considered a gating mechanism near the flagellar base that controls the entry of precursors into the flagellum. This would allow cells to restrict the time of effective flagellar growth and thereby control flagellar length. Our data indicated that cells are capable of individually regulating flagellar assembly onto basal bodies. We discuss a recent model of flagellar length regulation based on a balance of assembly and disassembly and conclude that flagellar length is controlled by additional factors, including the availability of flagellar proteins and the developmental status of basal bodies.  相似文献   

20.
Summary During regeneration of mechanically amputated flagella, flagellar scales and the subtending membrane accumulate in a villiform scale reservoir in which the scales interact to form patterns on the villi reminiscent of the arrangement they later assume on the flagellum. The reservoir membrane is continuous with the plasmalemma, and the scales, attached directly and indirectly to the membrane, leave the reservoir and migrate toward the developing flagella where they assemble into highly ordered layers. It is proposed that scale-scale interactions induce a process of auto-assembly initiating the complex arrangement of scale tiers on the flagellum and cell body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号