首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms capable of growth at 7 C were enumerated and isolated from soil samples from the manufacture and assembly areas of the Viking spacecraft. Populations ranging from 4.2 X 10(3) to 7.7 X 10(6)/g of soil were isolated from the 15 soil samples examined. Temperature requirements were determined, and those growing at 3 C, but not at 32 C, were designated as obligate psychrophiles in this investigation. Populations of soil bacteria, including aerobic sporeformers, ranging from 1.5 X 10(2) to 9.8 X 10(5)/g were capable of growth at 3 C, but not at 32 C. Bacterial isolates were identified to major generic groups. No psychrophilic sporeformers were isolated from soil from the manufacture area, but psychrophilic sporeformers ranged from 0 to 6.1 X 10(3)/g from soil from the assembly area.  相似文献   

2.
Microbiological profiles were determined for surfaces of the command module, lunar module (ascent and descent stages), instrument unit, Saturn S-4B stage, and the spacecraft lunar module adapter of the Apollo 10 and 11 spacecraft. Average levels of contamination of the command module were 2.1 x 10(4) and 2.7 x 10(4) microorganisms per ft(2) for Apollo 10 and 11, respectively. With the exception of the exterior surfaces of the ascent stage of the lunar module and the interior surfaces of the command module, average levels of microbial contamination on all components of the Apollo 11 were found to be lower than those observed on Apollo 10. For each Apollo mission, approximately 2,000 colonies were picked from a variety of media and identified. The results showed that approximately 95% of all isolates were those considered indigenous to humans; the remaining were associated with soil and dust in the environment. However, the ratio of these two general groups varied depending on the degrees of personnel density and environmental control associated with each module.  相似文献   

3.
The Explorer XXXIII Spacecraft (Anchored Interplanetary Monitoring Platform, or AIMP) was decontaminated to prevent gross contamination of the moon with terrestrial microorganisms. Assay of the total spacecraft surface before and after decontamination showed that the decontamination procedure reduced the viable microbiological burden from 1.40 x 10(6) to 3.60 x 10(4). However, assembly of parts which were not decontaminated for engineering reasons or were not assembled under cleanroom conditions increased the viable microbial burden at the time of launch to 2.62 x 10(5).  相似文献   

4.
Dry-heat resistance of selected psychrophiles.   总被引:1,自引:1,他引:0       下载免费PDF全文
The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min.  相似文献   

5.
The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min.  相似文献   

6.
Microbiological Profiles of Four Apollo Spacecraft   总被引:8,自引:7,他引:1       下载免费PDF全文
Selected surfaces from the Command Module, Lunar Module (ascent and descent stages), Instrument Unit, Saturn S-4B engine, and Spacecraft Lunar Module Adapter comprised the various components of four Apollo spacecraft which were assayed quantitatively and qualitatively for microorganisms. In addition, the first Lunar Roving Vehicle was assayed. Average levels of microbial contamination (10(4) per square foot of surface) on the Command Module, Instrument Unit, and Saturn S-4B engine were relatively consistent among spacecraft. The first postflight sampling of interior surfaces of the Command Module was possible due to elimination of the 21-day back-contamination quarantine period. Results of the pre- and postflight samples revealed increases in the postflight samples of 3 logs/inch(2). A total of 5,862 microbial isolates was identified; 183 and 327 were obtained from the Command Module at preflight and postflight sampling periods, respectively. Although the results showed that the majority of microorganisms isolated were those considered to be indigenous to humans, an increase in organisms associated with soil and dust was noted with each successive Apollo spacecraft.  相似文献   

7.
Conjugal transfer between soil bacterial population and microorganisms isolated from the rumen of herbivores from mercury-polluted area was investigated. The transfer of merA encoding mercury-resistance plasmids from soil bacteria Enterobacter cloacae and Enterococcus durans into two ruminal isolates Citrobacter freundii and Bacillus subtilis was observed. Approximately the same frequency of mobilization in mating experiments was observed for both Gram-negative (approximately 2.5 x 10(-8), transconjugants-to-recipient ratio) and Gram-positive (approximately 1.3 x 10(-8)) bacteria.  相似文献   

8.
Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar. Variables in the MF samplers, such as pore size, relative humidity, and flow rates, have been studied, but no effect was noted on recovery. The results show that the MF method could be used to estimate the number and types of microorganisms found in the air.  相似文献   

9.
The environmental release of engineered microorganisms has caused health and environmental concerns. In this study, an animal model was used to examine health effects following pulmonary exposure to environmental and clinical isolates. In order to rule out the possibility that an adverse response was caused by endotoxin, 50% lethal doses (LD50) were determined, when possible, with endotoxin-sensitive (C3HeB/FeJ) and endotoxin-resistant (C3H/HeJ) mice by using both environmental isolates (Pseudomonas aeruginosa BC16, BC17, BC18, and AC869 and Pseudomonas maltophilia BC6) and clinical isolates (P. aeruginosa PAO1 and DG1). The LD50 of strains AC869, DG1, and PAO1 are 1.05 x 10(7), 6.56 x 10(6), and 1.02 x 10(7) CFU, respectively, in C3HeB/FeJ mice and 1.05 x 10(7), 1.00 x 10(7), and 2.75 x 10(6) CFU, respectively, in C3H/HeJ mice. Strains BC17 and BC18 were not lethal to the animals. On the basis of the LD50 data, an appropriate sublethal dose (approximately 10(6) CFU) was selected. Animals were challenged intranasally with microorganisms, and clearance from the lungs and nasal cavity was determined. Strains BC17, BC18, and AC869 were not detected in lungs or nasal washes 14 days following treatment. Strains BC6, BC16, and DG1 were recovered from the nasal cavities at the end of the experiment. Only strain PAO1 was detected in lungs and in nasal cavities 14 days after treatment. At selected intervals following treatment, the percentages of polymorphonuclear leukocytes and lymphocytes in bronchoalveolar lavage samples were determined. P. aeruginosa AC869, PAO1, and DG1 elicited a relatively strong inflammatory response which was indirectly related to lung clearance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 degrees C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 degrees C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 degrees C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 degrees C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 degrees C. The 30-h cycle differs from the 5-and 15-h cycles at 125 degrees C. Thus, the heating cycle can be reduced if a small fraction (about 10-3 to 10-4) of very resistant spores can be tolerated.  相似文献   

11.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.  相似文献   

12.
The main purpose of this work was to study the microbiology of the Hungarian Upper Permian Siltstone (Aleurolite) Formation, to assess the safety of future underground repositories for nuclear waste. Sixty-seven air, groundwater, technical water, rock, and surface samples were collected aseptically from different depths. The number of aerobic and anaerobic isolates was 277. The mesophilic minimum and maximum CFU counts of the air samples were 1.07-5.84 x 10(2).mL-1 (aerobic) and 0.22-1.04 x 10(2).mL-1 (anaerobic), respectively; those of the water samples were 0.39-1.25 x 10(5).mL-1 (aerobic) and 0.36-3.9 x 10(3).mL-1 (anaerobic); those of the technical water samples were 0.27-5.03 x 10(6).mL-1 (aerobic) and 4 x 10(5)-->10(6).mL-1 (anaerobic); and those of the aleurolite samples were 2.32 x 10(2)-2.47 x 10(5).g-1 (aerobic) and 0.45-9.5 x 10(2).g-1 (anaerobic). In the groundwater, the thermophilic aerobic bacteria count was 0-2.4 x 10(2).mL-1 and the thermophilic anaerobic bacteria count was 0.43-4.6 x 10(4).mL-1. The gases produced by the 16 gas-forming isolates were CO2 (aerobic isolates), and CO2 and H2 (anaerobic isolates). About 20% of the aerobic isolates produced siderophores. The proportions of organic acid producers were lowest in aerobic and anaerobic isolates from the aleurolite, 13% and 14%, respectively. The highest proportions of acid producers in the aerobic and anaerobic isolates from the air samples were 63% and 54%. Altogether 160 of the aerobic isolates and 52 of the anaerobic isolates were spore formers. The radiosensitivity of the aerobic isolates was also determined; the D10 values of the sporeformers ranged between 0.8-2.44 kGy. Our results indicate that the sulfate-reducing bacteria and the production of complexing agents (siderophores) may contribute to the mobilization of radionuclides from underground repositories. As well, microbial gas production can influence the environmental conditions. The variability in bacterial radiotolerance indicates the biodiversity at this potential disposal site. These facts must be considered during the planning of a nuclear waste repository.  相似文献   

13.
Two recombinants formed in vivo between the filamentous phage f1 and the tetracycline-resistance-conferring plasmid pSC101 are capable of transducing sensitive cells to Tetr. These chimeric filamentous phage, VO-1 and VO-2, were previously shown to contain the entire f1 and pSC101 genomes (Vovis et al., 1977; Ohsumi et al., 1978). The genomes of VO-1 and VO-2 are unstable in vivo; VO-1 breaks down to yield a molecule similar to pSC101 and an f1-like species, f1′. f1′ was previously shown to differ from f1 by the presence of 209 additional nucleotides inserted in the carboxy-terminal portion of gene IV (Ravetch et al., 1979). We have found by hybridization analysis and direct DNA sequencing that this 209-nucleotide segment is present in one copy in pSC101, and that it has properties similar to known transposable elements. Therefore, we have called this sequence IS101. We have characterized the structures of both VO-1 and VO-2 in greater detail by restriction mapping and DNA sequence analysis. Both chimeras contain two copies of IS101, which are present as direct repeats and form the junctions between the f1 and pSC101 genomes. The IS101 elements in VO-1 and VO-2 are flanked by a five-base direct repeat of f1 sequence that is not repeated in wild-type f1. The junction between f1 and pSC101 in VO-1 is located at the same point as the IS101 element in f1′, while in VO-2 the junction between the two genomes is at a point in f1 located between the promoter and ribosome binding site for gene VIII. The pSC101-like molecules derived from the breakdown of VO-1 in vivo are identical to the original pSC101 in the region of IS101. The IS101 elements in the original and derived pSC101 plasmids are not flanked by any repeated sequence. Attempts to regenerate VO-1 from f1′ and pSC101, both of which contain one IS101 element, indicate that the breakdown of VO-1 is irreversible. These results are discussed in terms of current models for transposition, which postulate structures similar to VO-1 and VO-2 as intermediates in transposition.  相似文献   

14.
Dissociated cells from neonatal rat atria and ventricles were cultured in monolayers for 3 days. Newly synthesized 35S-methionine labeled myosin light chain isoforms ALC-1, ALC-2 (atrial) and VLC-1, VLC-2 (ventricular) were identified on 2D gels, and their pattern of synthesis was compared to that of myocard fragments immediately after explanation. ALCs were synthesized in 5- to 10-fold excess over VLCs by atrial cultures, whereas the converse was true for ventricular cultures, with two exceptions: one third of the LC-1 synthesized by ventricular fragments was ALC-1, and dissociated atrial cells synthesized very little LC-2 of either isoform. The former finding corresponds to the relatively high proportion of ALC-1 in neonatal ventricular tissue. We conclude that the regional programme of LC isoform expression is basically retained after tissue explantation and even after dissociation and culturing of cardiac myocytes.  相似文献   

15.
Shoot protoplasts of four fiber flax (Linum usitatissimum) varieties (7309, 948, Belinka and Viking) were isolated and cultured. The optimal condition for higher protoplast yield 1.8 x 10(6)/gFW and activity 85.5% (c.v. 948) were from 10 day old seedings. Culture in V-KM Agroase-island medium led to first divisions after 3 days (c. v. 948), and after twenty days with an efficiency of 36% of divided cells and 5.2% in plating efficiency. Plant regeneration was obtained in 7309 and Belinka on agar media B5-2, MS3 containing 0.6 mg/L 6-BA and 0.1 mg/L NAA. Roots and leaves regeneration were observed in Viking and 948 respectively.  相似文献   

16.
In scrapings of mouse cecal mucosae, motile bacteria outnumbered nonmotile bacteria by a ratio of 2:1. Obligately anaerobic bacteria were obtained from such scrapings through the use of techniques designed for the selective isolation of motile bacteria. One of the isolates, Roseburia cecicola, was rapidly motile in broth by means of 20 to 35 flagella arranged in a fascicle on each cell. R. cecicola cells colonized germfree mice (3 x 10(9) to 1 x 10(10) CFU/g of cecum) within 11 days after the animals were inoculated intragastrically with 2 x 10(8) CFU per mouse. In such monoassociated gnotobiotes, the bacteria were found primarily in the cecum, dispersed in the lumen among particles of digesta, and in the mucus over the epithelial surface. Between 2 and 3 weeks after birth, offspring of monoassociated adult mice were colonized by the bacterium (2 x 10(9) to 1 x 10(10) CFU/g of cecum). These results indicate that R. cecicola is suitable for studies of the ecology of host-associated microorganisms, particularly for investigation of the role of motility and possibly also chemotaxis in bacterial colonization of the mammalian gastrointestinal tract.  相似文献   

17.
It has been established that cyanobacteria play a vital role in the maintenance of flooded rice field fertility. To evaluate the potential use of nitrogen-fixing cyanobacteria as a natural biofertilizer for rice in Uruguay, the diversity, abundance and nitrogen fixing ability of these microorganisms were studied in the field and in the laboratory. The effect of urea fertilization on population density and diversity of heterocystous cyanobacteria was determined on a 3-year assay. The highest number of cyanobacteria, 1.6x10(4) CFU x m(-2), was found at the control 8 weeks after flooding. About 90% of the heterocystous cyanobacteria found in both treatments belong to the genera Nostoc and Anabaena. Maximal nitrogenase activity was reached after 12 weeks of flooding in both treatments, with an average of about 20 micromol C2H4 x m(-2) x h(-1). To improve the understanding of the environmental factors that can limit nitrogenase activity in rice fields, two of the most abundant cyanobacteria isolates were tested for tolerance to combined nitrogen and two herbicides. In both isolates 0.2 mM ammonium inhibited nitrogenase activity after 24 h of culture. The addition of field-recommended doses of quinclorac and propanil affected oxygen photoevolution but nitrogenase activity was only inhibited by propanil.  相似文献   

18.
Microtubule assembly kinetics. Changes with solution conditions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The assembly kinetics of microtubule protein are altered by ionic strength, temperature and Mg2+, but not by pH. High ionic strength (I0.2), low temperature (T less than 30 degrees C) and elevated Mg2+ (greater than or equal to 1.2 mM) induce a transition from biphasic to monophasic kinetics. Comparison of the activation energy obtained for the fast biphasic step at low ionic strength (I0.069) shows excellent agreement with the values obtained at high ionic strength, low temperature and elevated Mg2+. From this observation it can be implied that the tubulin-containing reactant of the fast biphasic event is also the species that elongates microtubules during monophasic assembly. Second-order rate constants for biphasic assembly are 3.82(+/- 0.72) x 10(7) M-1.s-1 and 5.19(+/- 1.25) x 10(6) M-1.s-1, and for monophasic assembly the rate constant is 2.12(+/- 0.56) x 10(7) M-1.s-1. The microtubule number concentration is constant during elongation of microtubules for biphasic and monophasic assembly.  相似文献   

19.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.  相似文献   

20.
The National Aeronautics and Space Administration (NASA) requires that microorganisms which could contaminate the surface of the moon as the result of lunar missions be enumerated and identified so that life forms in lunar materials returned to earth may be more easily recognized as being of native or terrestrial origin.Assessment of microbial contamination in the intramural environments used for the assembly and test of the manned lunar spacecraft (Apollo) was made using fallout strips and air samplers. Microbial contamination on the surfaces of Apollo Command and Lunar Modules was determined by use of the swab-rinse method.Preliminary results indicate that the levels of microbial contamination which accumulated on exposed stainless steel surfaces, as well as airborne microbial contamination in the high bay assembly areas, were similar to those encountered in the unmanned spacecraft assembly areas. However, higher levels of microbial contamination were detected on the Apollo spacecraft than on the unmanned lunar spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号