首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Linoleate hydropepoxide, purified by silica gel chromatography and at concentrations 70-100 nmol/mg mitochondrial protein, activated state 4 respiration and Mg-ATPase activity of mitochondria to levels of 80% and 25%, respectively, of those induced by 300 microM DNP, and completely inhibited oxidative phosphorylation. These effects are the same as those caused by linoleate, but the hydroperoxide caused more rapid degeneration of the activated respiration of mitochondria than linoleate. Further addition of the hydroperoxide induced oligomycin-insensitive Mg-ATPase to a level 3 times that obtained with DNP, accompanied by clearing of the mitochondrial suspension and release of malate dehydrogenase from the matrix. The extent of the effects caused by the methyl ester of linoleate hydroperoxide was much less than by the free acid.  相似文献   

3.
The effect of ethanol intake on liver mitochondrial functions was investigated by feeding rats with a liquid isocaloric diet containing various concentrations of ethanol. We found that after feeding the liquid diet for 2 to 3 months, the body weight of rats did not show a significant difference between treated and control groups. However, the mitochondrial respiration rate decreased significantly with the increase of ethanol concentration in the diet. We found that when the rats were fed on 10.8% ethanol, the average succinate-supported State 3 respiration rate decreased from 54.5 to 44.8 nmol O2/min/mg and the glutamate-malate-supported State 3 respiration rate decreased from 38.8 to 23.6 nmol O2/min/mg as compared with the control. Interestingly, we noted that ethanol intake caused a more drastic effect on State 3 respiration than on State 4 respiration, irrespective of the substrate utilized by the mitochondria. In addition, the respiratory control and ADP/O ratios were found to decrease concomitantly with the increase of ethanol level in the diet. Moreover, we found that the effect of ethanol on both respiratory control and ADP/O ratios of liver mitochondria was more pronounced in glutamate-malate-supported respiration than succinate-supported respiration. These results clearly demonstrate that ethanol intake by the rat can cause impairment of liver mitochondrial respiration and oxidative phosphorylation, and that these effects are exerted through damage to mitochondrial membranes.  相似文献   

4.
5.
5,5'-Diphenyl-2-thiohydantoin (DPTH) administered in vitro, inhibited state 3 oxidation, stimulated state 4 oxidation and decreased ADP:O ratio when 3-hydroxybutyrate and succinate were used as substrates. Considerably lower DPTH concentrations were required for the inhibition of 3-hydroxybutyrate oxidation (50% inhibition occurred at approximately 0.17 mumoles DPTH/mg protein) than were needed for inhibition of succinate oxidation (50% inhibition occurred at about 0.62 mumoles DPTH/mg protein). DPTH showed no inhibitory effects when ascorbate plus tetramethylphenylenediamine (TMPD) served as the substrate. The inhibition of state 3 respiration was not reversed by 2,4-dinitrophenol (DNP), although there was a slight increase in the DNP rate:state 3 rate suggesting the presence of a weak DPTH inhibotory site located within the Site I energy transport chain. Uncoupling, in the presence of DPTH, was observed with all substrates. In experiments utilizing sonicated mitochondria, DPTH inhibited NADH-linked oxidation, but did not inhibit succinate or ascorbate plus TMPD oxidation. The effects of DPTH were reversed by dilution and by addition of albumin. DPTH concentrations which produced inhibition of state 3 respiration in vitro were reached, in vivo, in the livers of rats receiving a single oral dose of 40 mg/kg of DPTH.  相似文献   

6.
7.
Inge Romslo  Torgeir Flatmark 《BBA》1975,387(1):80-94
1. Depending on the metabolic state, the addition of iron(III)-sucrose induces an inhibition or a stimulation of the respiration rate when added to isolated rat liver mitochondria.2. Under conditions identical to those used in the accumulation studies (Romslo, I. and Flatmark, T. (1973) Biochim. Biophys. Acta 305, 29?40), the ferric complex induces a decrease in the oxygen uptake concomitant to an oxidation of cytochromes c (+c1) and a (+a3). These results suggest that ferric iron is reduced to ferrous iron by the respiratory chain prior to or simultaneously with its energy-dependent accumulation.3. On the other hand, the addition of iron(III)-sucrose induces a stimulation of respiration in State 4 and State 3 provided Mg2+ is present in the suspending medium. In contrast to Ca2+, iron stimulates State 4 respiration in a cyclic process only within narrow concentration limits; at concentrations of iron above 100 μM the respiration remains in the activated state until anaerobiosis. The stimulation of State 4 respiration is more pronounced with succinate than with NAD-linked substrates, a difference which partly may be attributed to a stimulation of the succinate dehydrogenase complex.4. The stimulation of respiration by iron is approx. 3 times higher in State 3 than in State 4 and this difference can be attributed to a stimulation of the adenine nucleotide exchange reaction in State 3 with a concomitant increase in the rate of oxidative phosphorylation, although the PO ratio is slightly diminished.  相似文献   

8.
9.
10.
The dynamics of primary aliphatic amines (ethylamine, propylamine) effects on the processes of oxidative phosphorylation in rat liver mitochondria was estimated. The inhibiting action of ethylamine and propylamine on the oxidative phosphorylation processes in the rat liver mitochondria was revealed.  相似文献   

11.
12.
The rates of respiration in the presence of ADP and of phosphorylation as an ATP-ase activity of rat liver mitochondria was inhibited was in vitro by morphine with Ki=6.5 mM. The uncoupler-stimulated respiration of the mitochondria and the activity of ATP-ase and synthesis of ATP in the submitochondrial particles were not altered in the presence of morphine. It is suggested that morphine inhibited the adenine nucleotide transport through the mitochondrial membrane  相似文献   

13.
14.
15.
One variant of the model of the local coupling of phosphorylation and respiration in intact mitochondria was experimentally verified. The model is based on the following postulates: (1). Upon the functioning of H+ pumps, hydrogen ions bound to the outer membrane surface do not enter the aqueous phase but are utilized for ATP synthesis in the membrane supercomplex respiratory H+ pump--ATP synthetase. (2). During the functioning of H+ pumps, an appreciable part of the energy of oxidation reactions can be stored in the form of the thermodynamic (solvation) potential of H+ ions bound to the outer membrane surface. According to the model, the hydration of hydrogen ions during the transition from the outer face of the inner membrane to the aqueous phase should lead to a decrease in the efficiency of the system of the coupling of respiration and phosphorylation. The model takes into account the ability of the nonpermeating buffer to catalyze the detachment of hydrogen ions from the membrane surface to the aqueous phase and provide their complete solvation. A preparation of phosphorylating mitochondria with the covalently bound pH probe was obtained. This made it possible to register for the first time the presence of a local H+ gradient on the outer side of the inner mitochondrial membrane during the stable functioning of the oxidative phosphorylation system. It was shown on these mitochondrial preparations that a decrease in the outer local H+ gradient by the action of increased concentrations of buffer is accompanied by a significant decrease in the ADP/O parameter and a partial dissociation of oxidative phosphorylation. Conditions were determined under which increased concentrations of buffer in the incubation medium cause a partial dissociation and a decrease in the ADP/O value from 20% to twofold (depending on the quality of mitochondrial preparations). The results obtained are in full agreement with the predictions of the model.  相似文献   

16.
17.
18.
19.
1. Oleic acid at low concentrations (0--70 nmol/mg protein) stimulated mitochondrial state 4 respiration 4-fold, increased the apparent enthalpy change of the respiration per gram atom of oxygen consumed from -112 to -208 kJ/O and completely inhibited ATP synthesis without significant effect on the Mg-ATPase activity of mitochondria. 2. Similar effects on mitochondrial respiratory activities were observed with other fatty acids. 3. Bovine serum albumin (BSA) protected mitochondria from the effects of oleic acid irrespective of the order of addition of oleic acid and BSA to mitochondria. The capacity of BSA to bind oleic acid was calculated to be 3.6--7.1 (mean, 4.9) mol of oleic acid/mol of BSA. 4. The response time of mitochondrial respiration to added oleic acid or BSA was 20--25 s.  相似文献   

20.
NAD(P)H fluorescence, mitochondrial membrane potential and respiration rate were measured and manipulated in isolated liver cells from fed and starved rats in order to characterize control of mitochondrial respiration and phosphorylation. Increased mitochondrial NADH supply stimulated respiration and this accounted for most of the stimulation of respiration by vasopressin and extracellular ATP. From the response of respiration to NADH it was estimated that the control coefficient over respiration of the processes that supply mitochondrial NADH was about 0.15-0.3 in cells from fed rats. Inhibition of the ATP synthase with oligomycin increased the mitochondrial membrane potential and decreased respiration in cells from fed rats, while the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone had the opposite effect. There was a unique relationship between respiration and membrane potential irrespective of the ATP content of the cells indicating that phosphorylation potential controls respiration solely via phosphorylation (rather than by controlling NADH supply). From the response of respiration to the mitochondrial membrane potential (delta psi M) it was estimated that the control coefficients over respiration rate in cells from fed rats were: 0.29 by the processes that generate delta psi M, 0.49 by the process of ATP synthesis, transport and consumption, and 0.22 by the processes that cycle protons across the inner mitochondrial membrane other than via ATP synthesis (e.g. the passive proton leak). Control coefficients over the rate of mitochondrial ATP synthesis were 0.23, 0.84 and -0.07, respectively, by the same processes. The control distribution in cells from starved rats was similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号