首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms that terminate Ca(2+) release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca(2+) concentration inside the sarcoplasmic reticulum (SR), [Ca(2+)](SR), simultaneously with that in the cytosol, [Ca(2+)](c), during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca(2+) release flux (derived from [Ca(2+)](c)(t)) over the gradient that drives it (essentially equal to [Ca(2+)](SR)) provided directly, for the first time, a dynamic measure of the permeability to Ca(2+) of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca(2+)](SR) stabilized at ~35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ~10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca(2+) release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca(2+)](SR), sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca(2+) release.  相似文献   

2.
The purpose of this investigation was to determine the effects of reduced pH on Ca(2+)-induced Ca2+ release (CICR) from skeletal muscle sarcoplasmic reticulum (SR). Frog semitendinosus fiber bundles (1-3/bundle) were chemically skinned via saponin treatment (50 micrograms/mL, 20 min), which removes the sarcolemma and leaves the SR functional. The SR was first depleted of Ca2+ then loaded for 2 min at pCa (log free Ca2+ concentration) 6.6. CICR was then evoked by exposing the fibers to pCa 5-7 for 5-60 s. CICR was evoked both in the absence of ATP and Mg2+ and in the presence of beta, gamma-methyleneadenosine-5'-triphosphate (AMPPCP, a nonhydrolyzable form of ATP) and Mg2+. Ca2+ remaining in the SR was then assayed via caffeine (25 mM) contracture. In all cases, CICR evoked at pH 6.5 resulted in larger caffeine contractures than that evoked at 7.0, suggesting that more Ca2+ was released during CICR at the higher pH. Accordingly, rate constants for CICR were significantly greater at pH 7.0 than at pH 6.5. These results indicate that reduced pH depresses CICR from skeletal muscle SR.  相似文献   

3.
Calsequestrin (CSQ) is a high capacity Ca(2+)-binding protein present in the lumen of sarcoplasmic reticulum (SR) in striated muscle cells and has been shown to regulate the ryanodine receptor Ca(2+) release channel activity through interaction with other proteins present in the SR. Here we show that overexpression of wild-type CSQ or a CSQ mutant lacking the junction binding region (amino acids 86-191; Delta junc-CSQ) in mouse skeletal C2C12 myotube enhanced caffeine- and voltage-induced Ca(2+) release by increasing the Ca(2+) load in SR, whereas overexpression of a mutant CSQ lacking a Ca(2+) binding, aspartate-rich domain (amino acids 352-367; Delta asp-CSQ) showed the opposite effects. Depletion of SR Ca(2+) by thapsigargin initiated store-operated Ca(2+) entry (SOCE) in C2C12 myotubes. A large component of SOCE was inhibited by overexpression of wild-type CSQ or Delta junc-CSQ, whereas myotubes transfected with Delta asp-CSQ exhibited normal function of SOCE. These results indicate that the aspartate-rich segment of CSQ, under conditions of overexpression, can sustain structural interactions that interfere with the SOCE mechanism. Such retrograde activation mechanisms are possibly taking place at the junctional site of the SR.  相似文献   

4.
The neonatal mammalian skeletal muscle contains both type 1 and type 3 ryanodine receptors (RyR1 and RyR3) located in the sarcoplasmic reticulum membrane. An allosteric interaction between RyR1 and dihydropyridine receptors located in the plasma membrane mediates voltage-induced Ca(2+) release (VICR) from the sarcoplasmic reticulum. RyR3, which disappears in adult muscle, is not involved in VICR, and the role of the transiently expressed RyR3 remains elusive. Here we demonstrate that RyR1 participates in both VICR and Ca(2+)-induced Ca(2+) release (CICR) and that RyR3 amplifies RyR1-mediated CICR in neonatal skeletal muscle. Confocal measurements of intracellular Ca(2+) in primary cultured mouse skeletal myotubes reveal active sites of Ca(2+) release caused by peripheral coupling between dihydropyridine receptors and RyR1. In myotubes lacking RyR3, the peripheral VICR component is unaffected, and RyR1s alone are able to support inward CICR propagation in most cells at an average speed of approximately 190 microm/s. With the co-presence of RyR1 and RyR3 in wild-type cells, unmitigated radial CICR propagates at 2,440 microm/s. Because neonatal skeletal muscle lacks a well developed transverse tubule system, the RyR3 reinforcement of CICR seems to ensure a robust, uniform, and synchronous activation of Ca(2+) release throughout the cell body. Such functional interplay between RyR1 and RyR3 can serve important roles in Ca(2+) signaling of cell differentiation and muscle contraction.  相似文献   

5.
Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) occurs in smooth muscle as spontaneous SR Ca(2+) release or Ca(2+) sparks and, in some spiking tissues, as Ca(2+) release that is triggered by the activation of sarcolemmal Ca(2+) channels. Both processes display spatial localization in that release occurs at a higher frequency at specific subcellular regions. We have used two-photon flash photolysis (TPFP) of caged Ca(2+) (DMNP-EDTA) in Fluo-4-loaded urinary bladder smooth muscle cells to determine the extent to which spatially localized increases in Ca(2+) activate SR release and to further understand the molecular and biophysical processes underlying CICR. TPFP resulted in localized Ca(2+) release in the form of Ca(2+) sparks and Ca(2+) waves that were distinguishable from increases in Ca(2+) associated with Ca(2+) uncaging, unequivocally demonstrating that Ca(2+) release occurs subsequent to a localized rise in [Ca(2+)](i). TPFP-triggered Ca(2+) release was not constrained to a few discharge regions but could be activated at all areas of the cell, with release usually occurring at or within several microns of the site of photolysis. As expected, the process of CICR was dominated by ryanodine receptor (RYR) activity, as ryanodine abolished individual Ca(2+) sparks and evoked release with different threshold and kinetics in FKBP12.6-null cells. However, TPFP CICR was not completely inhibited by ryanodine; Ca(2+) release with distinct kinetic features occurred with a higher TPFP threshold in the presence of ryanodine. This high threshold release was blocked by xestospongin C, and the pharmacological sensitivity and kinetics were consistent with CICR release at high local [Ca(2+)](i) through inositol trisphosphate (InsP(3)) receptors (InsP(3)Rs). We conclude that CICR activated by localized Ca(2+) release bears essential similarities to those observed by the activation of I(Ca) (i.e., major dependence on the type 2 RYR), that the release is not spatially constrained to a few specific subcellular regions, and that Ca(2+) release through InsP(3)R can occur at high local [Ca(2+)](i).  相似文献   

6.
The action of ryanodine upon sarcoplasmic reticulum (SR) Ca2+ handling is controversial with evidence for both activation and inhibition of SR Ca2+ release. In this study, the role of the intraluminal SR Ca2+ load was probed as a potential regulator of ryanodine-mediated effects upon SR Ca2+ release. Through dual-wavelength spectroscopy of Ca2+:antipyrylazo III difference absorbance, the intraluminal Ca2+ dependence of ryanodine and Ca(2+)-induced Ca2+ release (CICR) from skeletal SR vesicles was examined. Ryanodine addition after initiation of Ca2+ uptake (a) increased the intraluminal Ca2+ sensitivity of CICR and (b) stimulated spontaneous Ca2+ release with a delayed onset. These ryanodine effects were inversely proportional to the intraluminal Ca2+ load. Ryanodine also inhibited subsequent CICR after reaccumulation of Ca2+ released from the initial CICR. These results provide evidence that ryanodine inhibits transitions between low and high affinity Ca2+ binding states of an intraluminal Ca2+ compartment, possibly calsequestrin. Conformational transitions of calsequestrin may be reciprocally coupled to transitions between open and closed states of the Ca2+ release channel.  相似文献   

7.
The Ca(2+) binding sites of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) have been identified as two high-affinity sites orientated towards the cytoplasm, two sites of low affinity facing the lumen, and a transient occluded species that is isolated from both membrane surfaces. Binding and release studies, using (45)Ca(2+), have invoked models with sequential binding and release from high- and low-affinity sites in a channel-like structure. We have characterised turnover conditions in isolated SR vesicles with oxalate in a Ca(2+)-limited state, [Ca(2)](lim), where both high- and low-affinity sites are vacant in the absence of chelators (Biochim. Biophys. Acta 1418 (1999) 48-60). Thapsigargin (TG), a high-affinity specific inhibitor of the Ca(2+)-ATPase, released a fraction of total Ca(2+) at [Ca(2+)](lim) that accumulated during active transport. Maximal Ca(2+) release was at 2:1 TG/ATPase. Ionophore, A23187, and Triton X-100 released the rest of Ca(2+) resistant to TG. The amount of Ca(2+) released depended on the incubation time at [Ca(2+)](lim), being 3.0 nmol/mg at 20 s and 0.42 nmol/mg at 1000 s. Rate constants for release declined from 0. 13 to 0.03 s(-1). The rapidly released early fraction declined with time and k=0.13 min(-1). Release was not due to reversal of the pump cycle since ADP had no effect; neither was release impaired with substrates acetyl phosphate or GTP. A phase of reuptake of Ca(2+) followed release, being greater with shorter delay (up to 200 s) following active transport. Reuptake was minimal with GTP, with delays more than 300 s, and was abolished by vanadate and at higher [TG], >5 microM. Ruthenium red had no effect on efflux, indicating that ryanodine-sensitive efflux channels in terminal cisternal membranes are not involved in the Ca(2+) release mechanism. It is concluded that the Ca(2+) released by TG is from the occluded Ca(2+) fraction. The Ca(2+) occlusion sites appear to be independent of both high-affinity cytoplasmic and low-affinity lumenal sites, supporting a multisite 'in line' sequential binding mechanism for Ca(2+) transport.  相似文献   

8.
Ca(2+)-induced Ca(2+) release (CICR) is a ubiquitous mechanism by which Ca(2+) release from the endoplasmic reticulum amplifies the trigger Ca(2+) entry and generates propagating Ca(2+) waves. To elucidate the mechanisms that control this positive feedback, we investigated the spatial and temporal kinetics and measured the gain function of CICR in small sensory neurons from mammalian dorsal root ganglions (DRGs). We found that subsurface Ca(2+) release units (CRUs) are under tight local control by Ca(2+) entry, whereas medullar CRUs as a "common pool" system are recruited by inwardly propagating CICR. Active CRUs often displayed repetitive Ca(2+) sparks, conferring the ability to encode a "memory" of neuronal activity well beyond the duration of an action potential. Store Ca(2+) reserve was able to support all CRUs each to fire approximately 15 sparks, excluding use-dependent inactivation or store depletion as the major CICR termination mechanism. Importantly, CICR in DRG neurons operated in a low gain, linear regime (gain = 0.54), which conferred intrinsic stability to CICR. Combined with high Ca(2+) current density (-156 pA/pF at -10 mV), such a low gain CICR system generated large intracellular Ca(2+) transients without jeopardizing the stability. These findings provide the first demonstration that CICR operating in a low gain regime can be harnessed to provide a robust and graded amplification of Ca(2+) signal in the absence of counteracting inhibitory mechanism.  相似文献   

9.
10.
We reported earlier that the two ryanodine receptor (RyR) isoforms (alpha- and beta-RyR) purified from frog skeletal muscle were equipotent in the Ca(2+)-induced Ca(2+) release (CICR) activity (Murayama, T., Kurebayashi, N., and Ogawa, Y. (2000) Biophys. J. 78, 1810-1824). Whether this is also the case with the native Ca(2+) release channel in the sarcoplasmic reticulum (SR), however, remains to be determined. Taking advantage of the facts that [(3)H]ryanodine binds only to the open form of the channels and that it is practically irreversible at 4 degrees C, we devised a method to separate the total binding to contributions of alpha- and beta-RyR, using immunoprecipitation with an alpha-RyR-specific monoclonal antibody. Surprisingly, the binding of alpha-RyR was strongly suppressed to as low as approximately 4% that of beta-RyR in the SR vesicles. The two isoforms, however, showed no difference in sensitivity to Ca(2+), adenine nucleotides, or caffeine. This reduced binding of alpha-RyR was ascribed to the low affinity for [(3)H]ryanodine, with no change in the maximal binding sites. Solubilization of SR with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonic acid partly remedied this nonequivalence, whereas 1 m NaCl was ineffective. 12-kDa FK506-binding protein (FKBP12), however, could not be responsible for it, because FK506 treatment did not eliminate the suppression, in contrast to marked removal of 12-kDa FK506-binding protein from alpha-RyR. These results suggest that alpha-RyR in the SR may serve Ca(2+) release in a mode other than CICR, being selectively suppressed in CICR.  相似文献   

11.
To elucidate the roles of sarcoplasmic reticulum (SR) Ca(2+) cycling and Na(+)/Ca(2+) exchanger (NCX) in sinoatrial node (SAN) pacemaking, we have applied stability and bifurcation analyses to a coupled-clock system model developed by Maltsev and Lakatta (Am J Physiol Heart Circ Physiol 296: H594-H615, 2009). Equilibrium point (EP) at which the system is stationary (i.e., the oscillatory system fails to function), periodic orbit (limit cycle), and their stability were determined as functions of model parameters. The stability analysis to detect bifurcation points confirmed crucial importance of SR Ca(2+) pumping rate constant (P(up)), NCX density (k(NCX)), and L-type Ca(2+) channel conductance for the system function reported in previous parameter-dependent numerical simulations. We showed, however, that the model cell does not exhibit self-sustained automaticity of SR Ca(2+) release at any clamped voltage and therefore needs further tuning to reproduce oscillatory local Ca(2+) release and net membrane current reported experimentally at -10 mV. Our further extended bifurcation analyses revealed important novel features of the pacemaker system that go beyond prior numerical simulations in relation to the roles of SR Ca(2+) cycling and NCX in SAN pacemaking. Specifically, we found that 1) NCX contributes to EP instability and enhancement of robustness in the full system during normal spontaneous action potential firings, while stabilizing EPs to prevent sustained Ca(2+) oscillations under voltage clamping; 2) SR requires relatively large k(NCX) and subsarcolemmal Ca(2+) diffusion barrier (i.e., subspace) to contribute to EP destabilization and enhancement of robustness; and 3) decrementing P(up) or k(NCX) decreased the full system robustness against hyperpolarizing loads because EP stabilization and cessation of pacemaking were observed at the lower critical amplitude of hyperpolarizing bias currents, suggesting that SR Ca(2+) cycling contributes to enhancement of the full system robustness by modulating NCX currents and promoting EP destabilization.  相似文献   

12.
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to β-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.  相似文献   

13.
Abnormal release of Ca(2+) from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction in heart failure (HF). We previously demonstrated that RyR2 macromolecular complexes from HF rat were significantly more depleted of FK506 binding protein (FKBP12.6). Here we assessed expression of key Ca(2+) handling proteins and measured SR Ca(2+) content in control and HF rat myocytes. Direct measurements of SR Ca(2+) content in permeabilized cardiac myocytes demonstrated that SR luminal [Ca(2+)] is markedly lowered in HF (HF: DeltaF/F(0) = 26.4+/-1.8, n=12; control: DeltaF/F(0) = 49.2+/-2.9, n=10; P<0.01). Furthermore, we demonstrated that the expression of RyR2 associated proteins (including calmodulin, sorcin, calsequestrin, protein phosphatase 1, protein phosphatase 2A), Ca(2+) ATPase (SERCA2a), PLB phosphorylation at Ser16 (PLB-S16), PLB phosphorylation at Thr17 (PLB-T17), L-type Ca(2+) channel (Cav1.2) and Na(+)- Ca(2+) exchanger (NCX) were significantly reduced in rat HF. Our results suggest that systolic SR reduced Ca(2+) release and diastolic SR Ca(2+) leak (due to defective protein-protein interaction between RyR2 and its associated proteins) along with reduced SR Ca(2+) uptake (due to down-regulation of SERCA2a, PLB-S16 and PLB-T17), abnormal Ca(2+) extrusion (due to down-regulation of NCX) and defective Ca(2+) -induced Ca(2+) release (due to down-regulation of Cav1.2) could contribute to HF.  相似文献   

14.
To determine the effect of voltage-independent alterations of L-type Ca(2+) current (I(Ca)) on the sarcoplasmic reticular (SR) Ca(2+) release in cardiac myocytes, we measured I(Ca) and cytosolic Ca(2+) transients (Ca(i)(2+); intracellular Ca(2+) concentration) in voltage-clamped rat ventricular myocytes during 1) an abrupt increase of extracellular [Ca(2+)] (Ca(o)(2+)) or 2) application of 1 microM FPL-64176, a Ca(2+) channel agonist, to selectively alter I(Ca) in the absence of changes in SR Ca(2+) loading. On the first depolarization in higher Ca(o)(2+), peak I(Ca) was increased by 46 +/- 6% (P < 0.001), but the increases in the maximal rate of rise of Ca(i)(2+) (dCa(i)(2+)/dt(max), where t is time; an index of SR Ca(2+) release flux) and the Ca(i)(2+) transient amplitude were not significant. Rapid exposure to FPL-64176 greatly slowed inactivation of I(Ca), increasing its time integral by 117 +/- 8% (P < 0.001) without significantly increasing peak I(Ca), dCa(i)(2+)/dt(max), or amplitude of the corresponding Ca(i)(2+) transient. Prolongation of exposure to higher Ca(o)(2+) or FPL-64176 did not further increase peak I(Ca) but greatly increased dCa(i)(2+)/dt(max), Ca(i)(2+) transient amplitude, and the gain of Ca(2+) release (dCa(i)(2+)/dt(max)/I(Ca)), evidently due to augmentation of the SR Ca(2+) loading. Also, the time to peak dCa(i)(2+)/dt(max) was significantly increased in the continuous presence of higher Ca(o)(2+) (by 37 +/- 5%, P < 0.001) or FPL-64176 (by 63 +/- 5%, P < 0.002). Our experiments provide the first evidence of a marked disparity between an increased peak I(Ca) and the corresponding SR Ca(2+) release. We attribute this to saturation of the SR Ca(2+) release flux as predicted by local control theory. Prolongation of the SR Ca(2+) release flux, caused by combined actions of a larger I(Ca) and maximally augmented SR Ca(2+) loading, might reflect additional Ca(2+) release from corbular SR.  相似文献   

15.
W G Wier  L A Blatter 《Cell calcium》1991,12(2-3):241-254
In this article, we review briefly the available theories and data on [Ca2+]i-waves and [Ca2+]i-oscillations in mammalian cardiac and vascular smooth muscles. In addition to our review, we also report: (i) the existence and characterization of rapid agonist-induced [Ca2+]i-waves in cultured vascular smooth muscle cells (A7r5 cells); and (ii a new method for studying rapid [Ca2+]i-waves in mammalian cardiac ventricular cells. In mammalian cardiac muscle several types of Ca(2+)-release from sarcoplasmic reticulum (SR) are known to occur and might be involved in Ca(2+)-waves and Ca(2+)-oscillations: (a) Ca(2+)-induced release of Ca2+, of the type thought to be important in normal excitation-contraction coupling; (b) spontaneous, cyclic release of Ca2+ related to a Ca(2+)-overload of the SR; and (c) Ins(1,4,5)P3-induced Ca(2+)-release. The available data support the idea that [Ca2+]i-waves in heart propagate by a mechanism somewhat different than that involved in normal excitation-contraction coupling (a, above), perhaps involving spontaneous release of Ca2+ from an overloaded SR (b, above). In mammalian vascular smooth muscle, our data support the idea that agonist-receptor interaction (vasopressin, in this case) initiates [Ca2+]i-waves that then propagate via some form of Ca(2+)-induced release of Ca2+, perhaps in a manner similar to that proposed by Berridge and Irvine [1].  相似文献   

16.
17.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

18.
Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes   总被引:2,自引:0,他引:2  
It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d myocytes) than when mediated by I(Ca) ( approximately 3.0 for 56d myocytes). We conclude that the lower-efficiency NCX-mediated CICR is a predominant mode of CICR in the earliest developmental stages that gradually decreases as the more efficient L-type Ca(2+) channel-mediated CICR increases in prominence with ontogeny.  相似文献   

19.
We have studied histamine (HA)-evoked intracellular Ca(2+) release in single, freshly isolated myocytes from the guinea pig urinary bladder. Short applications of histamine (5 s) produced a thapsigargin (TG)-sensitive transient increase in intracellular calcium concentration ([Ca(2+)](i)). It was established that histamine and caffeine (Caff) released Ca(2+) from the same intracellular stores in these cells. Reducing the Ca(2+) content of internal stores by incubating cells with U-73343 or cyclopiazonic acid (CPA) inhibited the histamine-evoked Ca(2+) release in 69% and 60% of cells, respectively. Under these conditions, all cells released Ca(2+) in response to either caffeine or acetylcholine (ACh). However, decreasing internal Ca(2+) stores by removing external Ca(2+) inhibited histamine-induced Ca(2+) mobilization in only 22% of cells. A similar small fraction of cells was inhibited when sarcoplasmic reticulum (SR) Ca(2+) pumps were quickly blocked to avoid a significant reduction of luminal Ca(2+). In conclusion, lowering the luminal Ca(2+) content in combination with an impairment of the SR Ca(2+) pump activity significantly diminishes the ability of histamine to evoke an all-or-none intracellular Ca(2+) release.  相似文献   

20.
Ca(2+) mediates the functional coupling between L-type Ca(2+) channel (LTCC) and sarcoplasmic reticulum (SR) Ca(2+) release channel (ryanodine receptor, RyR), participating in key pathophysiological processes. This crosstalk manifests as the orthograde Ca(2+)-induced Ca(2+)-release (CICR) mechanism triggered by Ca(2+) influx, but also as the retrograde Ca(2+)-dependent inactivation (CDI) of LTCC, which depends on both Ca(2+) permeating through the LTCC itself and on SR Ca(2+) release through the RyR. This latter effect has been suggested to rely on local rather than global Ca(2+) signaling, which might parallel the nanodomain control of CDI carried out through calmodulin (CaM). Analyzing the CICR in catecholaminergic polymorphic ventricular tachycardia (CPVT) mice as a model of RyR-generated Ca(2+) leak, we evidence here that increased occurrence of the discrete local SR Ca(2+) releases through the RyRs (Ca(2+) sparks) cause a depolarizing shift in activation and a hyperpolarizing shift in isochronic inactivation of cardiac LTCC current resulting in the reduction of window current. Both increasing fast [Ca(2+)](i) buffer capacity or depleting SR Ca(2+) store blunted these changes, which could be reproduced in WT cells by RyRCa(2+) leak induced with Ryanodol and CaM inhibition.Our results unveiled a new paradigm for CaM-dependent effect on LTCC gating and further the nanodomain Ca(2+) control of LTCC, emphasizing the importance of spatio-temporal relationships between Ca(2+) signals and CaM function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号