首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 894 毫秒
1.
Phenotypically and genetically variable salt marsh plants are needed for wetland creation and restoration efforts. Selected tissue culture regenerants of five salt marsh monocots, Spartina patens, Spartina alterniflora, Juncus gerardi, Juncus roemerianus, and Scirpus robustus, were planted in a simulated marsh field plot that was flood-irrigated with 10 ppt salt water to compare their phenotypic variation for potential use in wetland projects. Plant growth was evaluated after one growing season. Phenotypic variation among regenerants was found in S. alterniflora, S. patens and J. gerardi, indicating the occurrence of somaclonal variation. In S. alterniflora, significant differences occurred among regenerants in stem density. In J. gerardi, significant differences occurred in height and clone circumference. In S. patens, two of the nine regenerants exhibited higher biomass and stem density than some of the other regenerants. By using the random amplified polymorphic DNA (RAPD) technique, genome DNA variation in S. patens regenerants was detected. Genetic variation not only occurred among phenotypically different regenerants, but also among those phenotypically similar for the characteristics measured. Tissue culture–regenerated plants often have desirable genetic characteristics and adaptability as a result of somaclonal variation and may enable a species to perform its ecological functions in created or restored wetlands where ideal environments cannot be achieved. Thus, some previously unrestorable sites may be restorable or marginal marshes made more productive.  相似文献   

2.
The in vitro effect of NaCl on NAD-malate dehydrogenase (E.C. 1.1.1.37; MDH) from desalted extracts of roots and leaves of six salt marsh halophytes was investigated. The plants, all native and important constituents of the salt marshes of the east coast of the U.S., included Spartina alterniflora Loisel., Spartina patens (Aiton) Muhl., Distichlis spicata (L.) Greene, Juncus roemerianus Schleele, Salicornia virginica L., and Borrichia frutescens (L.) DC. In the leaf extracts of all species except Borrichia frutescens, the MDH activity was slightly stimulated by NaCl at concentrations around 0.05 M at optimal pH (8.0–8.5) and was reduced by NaCl in higher concentrations. MDH activity in the leaf extract of Borrichia frutescens was more salt-tolerant and maximal activity occurred around 0.25 M NaCl at optimal pH (7.0). Even though similar pH optimums for activity were exhibited in the root and leaf extracts of each species, the MDH activity in the root extract was more salt-tolerant than that in the leaf extract. NaCl at concentrations up to 0.1 M stimulated the MDH activity in the root extracts of all species except that of Borrichia frutescens, which had an optimal activity in 0.5 M NaCl. In the root and leaf extracts of Borrichia frutescens, the activity of cytosol MDH was much more salt-tolerant than that of the mitochondrial MDH. A shift of the optimal pH to more acidic values with increasing concentrations of NaCl was noted in the extracts of all the species except Borrichia frutescens. The action of NaCl on MDH activity appeared to be a general ionic effect as judged by the response of the enzyme activity in the presence of iso-ionic concentrations of other salts and isoosmotic mannitol. Thus, the response of the MDH from five of the salt marsh plants to NaCl is similar to that of glycophytes. However, Borrichia frutescens possesses a salt-tolerant MDH that has optimal activity in a salt concentration as high as that of the environment.  相似文献   

3.
Proline accumulation by eight major species of salt marsh halophytes was examined under growth chamber and field conditions. When the plants were exposed to increasing salinities in the growth chamber, they accumulated proline after a threshold salinity had been reached. Three general patterns were apparent. Limonium carolinianum (Walt.) Britt. and Junius roemerianus Scheele began to accumulate proline at 0.25 m NaCl with accumulations up to 63.6 μmoles per gram fresh weight at higher salinities. The C4 grasses, Spartina alterniflora Loisel., Spartina patens (Aiton) Muhl., and Distichlis spicata (L.) Greene, had threshold salinity levels around 0.5 m NaCl and accumulated proline to 27.4 μmoles per gram fresh weight. The succulents, Salicornia bigelovii Torr., Salicornia virginica L., and Borrichia frutescens (L.) DC, did not accumulate proline until very high salinities (0.7 m) were reached. Water stress imposed by polyethylene glycol instead of NaCl caused similar proline accumulation in the species studied, but to different extents. Field measurements of proline content and soil salinities correlated well with the findings from growth chamber experiments. Rates of proline accumulation and breakdown in L. carolinianum were sufficient for osmotic adjustment by the plant to the changes in interstitial salinity in the marsh. The significance of proline accumulation as an adaptation to the salt marsh environment was species specific. We suggest that proline accumulation is of considerable importance in L. carolinianum and J. roemerianus, important to the C4 grasses at certain times and in certain locations in the marsh, and of little importance in the succulents.  相似文献   

4.
A nitrogen (ammonium nitrate) pulse of 200 kg ha“1 was added to stands of tall (1.0–1.5 m) Spartina alterniflora, short (< 0.5 m) Spartina alterniflora, and Juncus roemerianus in a Georgia salt marsh in July. The major response ten weeks later was an increase in the aerial biomass and a sharp reduction in the C/N ratio in short Spartina alterniflora. One year after the treatment the difference between the biomass in enriched and control plots was greater than ten weeks after treatment, but the C/N ratio in the plants in the treated plots had risen to that of the controls. The availability of nitrogen appears to limit growth in the middle elevation Georgia salt marsh (short S. alterniflora), but not in the lower (tall S. alterniflora) or higher (J. roemerianus) portions.  相似文献   

5.
Oysters are ecosystem engineers in marine ecosystems, but the functions of oyster shell deposits in intertidal salt marshes are not well understood. The annual plant Suaeda linearis is associated with oyster shell deposits in Georgia salt marshes. We hypothesized that oyster shell deposits promoted the distribution of Suaeda linearis by engineering soil conditions unfavorable to dominant salt marsh plants of the region (the shrub Borrichia frutescens, the rush Juncus roemerianus, and the grass Spartina alterniflora). We tested this hypothesis using common garden pot experiments and field transplant experiments. Suaeda linearis thrived in Borrichia frutescens stands in the absence of neighbors, but was suppressed by Borrichia frutescens in the with-neighbor treatment, suggesting that Suaeda linearis was excluded from Borrichia frutescens stands by interspecific competition. Suaeda linearis plants all died in Juncus roemerianus and Spartina alterniflora stands, regardless of neighbor treatments, indicating that Suaeda linearis is excluded from these habitats by physical stress (likely water-logging). In contrast, Borrichia frutescens, Juncus roemerianus, and Spartina alterniflora all performed poorly in Suaeda linearis stands regardless of neighbor treatments, probably due to physical stresses such as low soil water content and low organic matter content. Thus, oyster shell deposits play an important ecosystem engineering role in influencing salt marsh plant communities by providing a unique niche for Suaeda linearis, which otherwise would be rare or absent in salt marshes in the southeastern US. Since the success of Suaeda linearis is linked to the success of oysters, efforts to protect and restore oyster reefs may also benefit salt marsh plant communities.  相似文献   

6.
Sixty-two partial formyltetrahydrofolate synthetase (FTHFS) structural gene sequences were recovered from roots of salt marsh plants, including Spartina alterniflora, Salicornia virginica, and Juncus roemerianus. Only S. alterniflora roots yielded sequences grouping with FTHFS sequences from known acetogens. Most other FTHFS or FTHFS-like sequences grouped with those from sulfate-reducing bacteria. Several sequences that grouped with Sphingomonas paucimobilis ligH were also recovered.  相似文献   

7.
A hydroponic culture experiment was performed to ascertain whether sediment soluble sulfide at in situ concentrations plays a role in the determination of height forms of Spartina alterniflora in salt marshes of the United States. Additional experiments were conducted for both Spartina cynosuroides and Borrichia frutescens to determine if sulfide also influences the overall distribution of these species in the marsh. In situ soluble sulfide concentrations ranged from 0.02 mm in creek bank sites up to 3.0 mm in the inner marsh. In culture treatments, both plant height and biomass production of S. alterniflora were inhibited at a sulfide concentration as low as 1.0 mm , strongly suggesting a role for sulfide in the determination of height forms in the marsh. Production of S. cynosuroides was inhibited at high sulfide concentrations. However, over a range of concentrations similar to in situ values, no significant reduction in growth was observed, indicating sulfide was not a primary determinant of growth in stands of S. cynosuroides on Sapelo Island, Georgia. A sulfide concentration of 0.5 mm inhibited production in B. frutescens. In situ sulfide concentrations as high as 0.5 mm were found only in mixed stands of Juncus roemerianus and B. frutescens.  相似文献   

8.
Summary Tissue culture and plant regeneration protocols for the salt marsh plants Juncus roemerianus Scheele and Juncus gerardi Loisel, were developed. J. roemerianus callus was induced from mature seeds cultured on Murashige and Skoog (MS) medium supplemented with 2.22 μM 6-benzylaminopurine (BA), 5.37 μM α-naphthaleneacetic acid (NAA), 2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D), and 50 ml l−1 coconut water (callus induction medium). The callus was subcultured on MS medium containing 2.22 μM BA, 5.37 μM NAA, and 9.05 μM 2,4-D for callus maintenance. Shoot regeneration occurred 2 wk after transferring the callus onto shoot regeneration medium, which consisted of MS medium containing BA or thidiazuron. A high frequency of shoot regeneration was obtained when the medium contained 13.3 μM BA. Regenerated shoots were transferred to MS medium supplemented with 10.7 μM NAA for root production. Rooting did not occur in the shoots regenerated on the thidiazuron-containing media. The callus induction medium for J. roemerianus was also effective in inducing callus of J. gerardi from young inflorescences. The same medium was also used for callus maintenance. Shoot regeneration occurred 10 d after transferring the callus onto MS medium supplemented with 0.44 μM BA and 0.57 μM indole-3-acetic acid. Root regeneration occurred after transferring the shoots onto MS medium plus 0.44 μM BA and 14.8 μM indole-3-butyric acid. The regenerated plants of both J. roemerianus and J. gerardi grew vigorously in potting soil in the greenhouse. J. roemerianus regenerants also grew well in a saltwater-irrigated field plot. Tissue culture-produced plants of J. roemerianus and J. gerardi can be used for planting in created or restored wetlands.  相似文献   

9.
A common but often less tested explanation for the successful invasion of alien species is that invasive alien species outcompete their co-occurring natives, which may not always be the case. In this study, we established artificial environmental gradients in a series of pot experiments with controlled environments to investigate the effects of salinity, sediment type and waterlogging on the performance of and interactions between Phragmites australis (native) and Spartina alterniflora (alien), which generally co-exist in the saline intertidal zones of Chinese and American coasts. Significant effects of salinity and waterlogging were detected on biomass production and morphological characteristics of S. alterniflora and P. australis, and the competitive interactions between the two species were found to vary with all three environmental factors in our experiments. Relative Neighbor Effect (RNE) analyses indicate that competitive dominance of S. alterniflora occurred under the conditions of high salinity, sandy sediment and full immersion, whereas P. australis showed competitive dominance under the conditions of low salinity and non-immersion. Our results suggest that S. alterniflora might outcompete P. australis under conditions present in early salt marsh succession, which support the viewpoint that the outcomes of competition between co-occurring native and invasive alien plants depend on the growing conditions. The implication of this study is that in response to the environmental changes expected from seawater intrusion and sea-level rise, the range of S. alterniflora is expected to expand further in the Yangtze River estuary in the future.  相似文献   

10.
For most plants, elevated salinities can promote both hyperionic and hyperosmotic stress, often resulting in decreased growth and increased mortality. In previous studies involving plant–water relations, two contrasting physiological mechanisms to water stress have emerged: (i) stress-tolerance, which can be achieved through osmotic adjustment and changes in tissue elasticity, and (ii) stress-avoidance, which restricts further water loss through decreased stomatal conductance and changes in leaf morphology and/or orientation. While these processes have been well characterized in angiosperms during drought, few studies have considered these responses in halophytes during salt-stress. In this study, experimental microcosms were used to evaluate salt-tolerance and salt-avoidance in two contrasting coastal-marsh halophytes, Juncus roemerianus and Spartina alterniflora. In mature S. alterniflora, preacclimated to freshwater, only salt-tolerance mechanisms (osmotic adjustment and increased tissue rigidity) were observed during high salinity conditions. In contrast, physiological modifications observed in mature J. roemerianus involved salt-avoidance through decreased stomatal conductance. These physiological responses are consistent with zonation patterns in these plants, wherein S. alterniflora resides in the lower marsh and must contend with long-term salt exposure and J. roemerianus inhabits the upper reaches of salt-marshes where salinities tend to be lower and where salt-stress often involves transient exposure to high salinities.  相似文献   

11.
Brewer  J. Stephen 《Plant Ecology》2003,168(1):93-106
Previous studies have suggested that belowground competition for nutrients influences plant zonation in salt marshes. In this study, I tested the hypothesis that competition for nitrogen structured a clonal plant community in a nitrogen-limited salt marsh in coastal Mississippi, USA. In contrast to most previous field studies that have investigated mechanisms of competition, I examined clonal growth responses of established genets of a nitrogen-demanding low-intertidal species (Spartina alterniflora) to nitrogen addition and the removal of a nitrogen-conserving high-intertidal species (Juncus roemerianus). Nitrogen addition stimulated clonal invasion of the Juncus zone by Spartina but did not reduce the significant competitive effects of Juncus on Spartina. Simulated Juncus shade did not reduce invasion of the Juncus zone by Spartina, indicating that belowground competition reduced clonal invasion. In the last year of the study, the border shifted unexpectedly towards the Spartina zone, resulting in competitive displacement of Spartina by Juncus. Nitrogen addition did not prevent or slow this displacement, further contradicting the nitrogen competition hypothesis. Although growth rates were much more strongly limited by nitrogen in Spartina than in Juncus, nitrogen addition did not cause the displacement of Juncus by Spartina after three growing seasons. I conclude that zonation of Spartina and Juncus is maintained by preemption of space and greater tolerance of low nitrogen supplies by Juncus in the high marsh. These results contrast sharply with findings of reduced belowground competition with nutrient addition in previous studies and highlight the important role of nutrient-mediated competition for space between clonal plants.  相似文献   

12.
Panicum hemitomon Schult andSpartina patens (Ait) Muhl. plants from Louisiana Gulf Coast fresh and brackish marshes were subjected to hydrogen sulfide under controlled sediment redox conditions. Net carbon assimilation responses of both species to the combined sediment anaerobiosis and hydrogen sulfide concentrations was measured.Panicum hemitomon was more sensitive to hydrogen sulfide as compared toSpartina patens. Initiation of reduction in net carbon assimilation inP. hemitomon began when H2S concentrations of soil solution exceeded 0.22 mgl-1. Reductions in net carbon assimilation inS. patens were also noted at H2S concentrations exceeding 0.34 mgl-1. The reduction in net carbon assimilation of both species measured at elevated H2S concentrations suggests that extreme anaerobiosis and elevated sulfide could contribute to the growth reduction of these species under certain conditions. However based on H2S concentration in fresh and brackish marsh soil profiles, levels were too low to cause any adverse effects ofPanicum hemitomon. In brackish marsh soils containing hydrogen sulfide of 3.4 mgl-1 in soil solution, sulfide could be a major factor limiting growth ofS. patens.  相似文献   

13.
Greenhouse and field studies were conducted to evaluate the effect of crude oil on selected US Gulf of Mexico coastal marsh species. Species showed different levels of sensitivity to oiling between greenhouse and field conditions. In greenhouse studies, two crude oils were used: South Louisiana crude oil (SLC) and Arabian Medium crude oil (AMC). The majority of Spartina patens plants died within one month following oiling with little or no recovery after three months. Panicum hemitomon and Spartina alterniflora were also adversely affected by oiling under greenhouse conditions but to a lesser extent than S. patens. The SLC or AMC oiling led to biomass reductions in S. alterniflora and S. patens. The dry biomass was not affected by oiling in P. hemitomon, Sagittaria lancifolia, Typha latifolia, and Scirpus olneyi. Results showed that S. patens plants were more sensitive to SLC as compared to AMC oil. Gross CO2-C fixation data collected in the greenhouse indicated no differences in recovery among species across oiling treatments for S. lancifolia, S. olneyi, and T. latifolia. Field studies with S. alterniflora, S. patens and S. lancifolia demonstrated initial sensitivity of these species to oiling, and recovery following oiling with SLC. Our data also showed that caution must be employed whenever results from greenhouse studies are extrapolated to predict oil impact on vegetation under field conditions. Development of any sensitivity index of plant responses to oiling should not be based on greenhouse experiments only. Field evaluations should be included which best depict plant responses to oiling. Thus, restoration measures of US Gulf of Mexico coastal marshes following oiling should rely primarily on field studies. The field research suggests that the US Gulf of Mexico coastal marsh vegetation are likely to recover from oil spills naturally without the need for remediation procedures.  相似文献   

14.
The current expansion of Phragmites australis into the high marsh shortgrass (Spartina patens, Distichlis spicata) communities of eastern U.S. salt marshes provided an opportunity to identify the influence of vegetation types on pools and fluxes of dissolved inorganic nitrogen (DIN). Two brackish tidal marshes of the National Estuarine Research Reserve system were examined, Piermont Marsh of the Hudson River NERR in New York and Hog Island in the Jacques Coustaeu NERR of New Jersey. Pools of DIN in porewater and rates of DIN surface flux were compared in replicated pairs of recently-expanded P. australis and neighboring S. patens-dominated patches on the high marsh surface. Both marshes generally imported nitrate (NO3) and exported ammonium (NH4+), such that overall DIN was exported. No differences in surface exchange of NO3 or NH4+ were observed between vegetation types. Depth-averaged porewater NH4+ concentrations over the entire growing season were 56% lower under P. australis than under S. patens (average 1.4 vs. 3.2 mg NH4+ L−1) with the most profound differences in November. Porewater profiles showed an accumulation of NH4+ at depth in S. patens and constant low concentrations in P. australis from the soil surface to 50 cm depth, with no significant differences in porewater salinity. Despite these profound differences in porewater, NH4+ diffusion from soils of P. australis and S. patens were not measurably different, were similar to other published rates, and were well below estimated rates based on passive diffusion alone. Rapid adsorption and uptake by litter and microbes in surface soils of both communities may buffer NH4+ loss to flooding tides in both communities, thereby reducing the impact of P. australis invasion on NH4+ flux to flooding waters.  相似文献   

15.
Gradients in oxygen availability and salinity are among the most important environmental parameters influencing zonation in salt marsh communities. The combined effects of oxygen and salinity on the germination of two salt marsh grasses, Spartina alterniflora and Phragmites australis, were studied in growth chamber experiments. Germination of both species was initiated by emergence of the shoot and completed by root emergence. Percentage S. alterniflora germination was reduced at high salinity (40 g NaCl/L) and in decreased oxygen (5 and 2.5%). In 0% oxygen shoots emerged, but roots did not. P. australis germination was reduced at a lower salinity (25 g NaCl/L) than S. alterniflora, and inhibited at 40 g NaCl/L and in anoxia. However, a combination of hypoxia (10 and 5% O2) and moderate salinity (5 and 10 g NaCl/L) increased P. australis germination. When bare areas in the salt marsh are colonized, the different germination responses of these two species to combinations of oxygen and salt concentrations are important in establishing their initial zonation. In high salinity wetlands S. alterniflora populates the lower marsh and P. australis occupies the high marsh at the upland boundary.  相似文献   

16.
Summary Studies of the seasonal CO2 and water vapor exchange patterns of Juncus roemerianus and Spartina alterniflora were conducted in an undisturbed marsh community on Sapelo Island, Georgia. Daily patterns of net photosynthesis, transpiration, leaf diffusive conductance and water-use efficiency in response to ambient conditions were monitored on intact, in situ plants. Net primary productivity was calculated from the daytime CO2 fixation totals, nighttime CO2 loss, leaf standing stock and aboveground to belowground biomass ratios for each plant type.The tall form of S. alterniflora had higher rates of photosynthesis and higher water-use efficiency values which, in conjunction with low respiratory losses and large leaf standing crop, results in high values of net primary productivity. The environmental factors in the marsh which permit these physiological responses occur in less than 10% of the marsh. Overall, the physiological capabilities of the short form of S. alterniflora were reduced in comparison to the tall form, but the combination of environmental factors which determine the physiological responses of this form occur in a much greater portion of the marsh, and the short form of S. alterniflora dominates the Sapelo Island marshes.The response patterns of the C3 species, J. roemerianus, differed somewhat from the height forms of S. alterniflora. A large, seasonally constant leaf standing crop coupled with moderate rates of photosynthesis resulted in a net primary productivity value which was between the tall and short height forms of S. alterniflora. However, as with the tall S. alterniflora, the environmental conditions under which this high productivity and high water loss rate can be sustained are restricted to specific regions of the environmental gradient in the marsh.Contribution No. 435 from the University of Georgia Marine Institute  相似文献   

17.
Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood‐tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse.  相似文献   

18.
Climate change is driving abiotic shifts that can threaten the conservation of foundation species and the habitats they support. Directional range shifting is one mechanism of escape, but requires the successful colonization of habitats where interspecific interactions may differ from those to which a species has adapted. For plants with multiple reproductive strategies, these range-edge interactions may alter the investment or allocation toward a given reproductive strategy. In this study, we quantified sexual reproduction of the clonal marsh grass Spartina patens across an inland colonization front into maritime forest being driven by sea-level rise. We find that flowering is variable across S. patens meadows, but consistently reduced in low light conditions like those of the forest understory. Observational surveys of S. patens flowering at four sites in the Delmarva Peninsula agreed with the results of two experimental manipulations of light availability (shading experiment in S. patens-dominated marsh and a forest dieback manipulation). These three approaches pinpointed light limitation as a principal control on S. patens flowering capacity, suggesting that light competition with taller upland species can suppress S. patens flowering along its upland migration front. Consequently, all propagation in shaded conditions must occur clonally or via seeds from the marsh, a reproductive restriction that could limit the potential for local adaptation and reduce genetic diversity. Future research is needed to determine whether the lack of flowering is the result of a trade-off between sexual and clonal reproduction or results from insufficient photosynthetic products needed to achieve either reproductive method.  相似文献   

19.
Edaphic diatoms inhabiting the sediments beneath dwarf Spartina alterniflora Loisel. and S. patens (Ait.) Muhl. in Great Bay salt marsh, Tuckerton, New Jersey were collected from 24 September 1974 through 20 August 1975. Of the 91 taxa encountered, 8 were endemic to the dwarf S. alterniflora habitat and 42 endemic to the S. patens habitat. The edaphic diatom community associated with S. patens was comprised of a much greater number of taxa and possessed higher values for species diversity (H') and evenness (J') than the community associated with dwarf S. alterniflora. The salinity of the marsh surface showed a completely opposite trend, being greatly reduced at the S. patens habitat. A highly significant relationship (P < 0.001) between the number of diatom taxa and marsh surface salinity at the S. patens habitat was demonstrated by a least squares regression. This finding led to the conclusion that the dissimilarity in the structure of the two edaphic diatom communities was primarily due to the very low marsh surface salinities at the S. patens habitat from January through June, and that this sustained. low-salinity regime allowed a very large number of taxa to coexist only in the S. patens community. Comparison of the diatom flora of Great Bay salt marsh with that of a Delaware marsh studied previously by the author showed that 67.0% of the 91 taxa encountered in New Jersey also occur on the Delaware marsh.  相似文献   

20.
Foundation species structure environments and create refuge from environmental stress. In New England high salt marsh, the grass Spartina patens is a foundation species that reduces salinity, anoxia, desiccation, and thermal stresses through canopy shading and root proliferation. In a factorial S. patens-removal and warming field experiment, foundation species removal strongly impacted every aspect of the community, reiterating the important role of the foundation species S. patens in the high marsh. Given this central role, we hypothesized that facilitation by the foundation species would be even more important under warmer conditions by ameliorating more severe thermal stress. However, the ecological role of S. patens was unaffected by experimental warming, and, independent of the presence of the foundation species, warming had only weak effects on the salt marsh ecological community. Only the foundation species itself responded strongly to warming, by significantly increasing aboveground production in warmed plots. Apparently, amelioration of thermal stress is not as important for salt marsh ecosystem function as S. patens’ moderation of salinity and desiccation stresses. From these experimental results, we anticipate that climate change-associated thermal stress will not greatly affect S. patens-dominated high marsh communities. In contrast, foundation species loss, an emergent conservation issue in Atlantic salt marshes, represents a critical threat to salt marsh ecosystem function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号