首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
跨损伤合成的DNA聚合酶——一类新的DNA聚合酶   总被引:1,自引:0,他引:1  
细胞虽然拥有多种修复途径,但有些DNA损伤仍不可避免地会逃避修复而在基因组上保留下来,细胞跨损伤DNA合成的分子机制一直是DNA修复中主要的未解决问题之一.最近通过对一类结构相关性UmuC/DinB蛋白质超家族成员的研究发现它们具有DNA聚合酶功能.这类新发现的DNA聚合酶不同于经典的复制性DNA聚合酶,它们能以易误/突变(error-prone/mutagenic)或无误(error-free)方式进行跨损伤(translesion)DNA合成,并且从细菌到人在进化上功能保守.  相似文献   

2.
DNA polymerases and DNA ligases have been studied during development of the amphibian, axolotl. Three forms of DNA polymerase, I, II, and III, with sedimentation coefficients in sucrose of 9, 6, and 3.1 S, respectively, have been found in the axolotl egg. The activity of these three DNA polymerases is unchanged during early embryonic development. The activity of DNA polymerase III then increases significantly, beginning at the tailbud stage, while the activity of DNA polymerase II increases at the larval stage. DNA polymerase I does not show significant variations during this time. On the basis of their catalytic properties, it appears that DNA polymerases I and II are α-type DNA polymerases whereas DNA polymerase III is a β-type enzyme. Two different DNA ligases are found in the axolotl, one showing a sedimentation coefficient in sucrose of 8.2 S (heavy form) and the other, 6 S (light form). The 6 S enzyme is the major DNA ligase activity found in the egg before and after fertilization. Its activity then decreases during embryonic development. It can be observed again, as the only DNA ligase activity, in some adult tissues. The 8.2 S enzyme appears during the first division cycle of the fertilized egg, is present at all stages of embryonic development, and is absent from the adult tissues tested. Properties of the two DNA ligases at different stages of embryonic development have also been compared.  相似文献   

3.
Four DNA polymerases, two enzymes from the nucleus and two from the cytoplasm, were purified 2000- to 7000-fold from continuous mouse cell-line (JLS-V9), by sequential column chromatography. Each of these polymerases require all the deoxynucleoside-5′-triphosphates in order to synthesize DNA, using activated DNA as a primer-template, and can copy the ribonucleotide strand of hybrid templates, but their rate of efficiency varies. The molecular weights of these DNA polymerases range from 35,000 to 160,000, as estimated by Sephadex column chromatography. Three out of the four DNA polymerases are probably a single polypeptide chain, since they have a single major band in polyacrylamide gel electrophoresis as well as one enzymatically active peak in guanidine hydrochloride gel filtration. The highly purified preparation of the high molecular weight cytoplasmic DNA polymerase contains two major bands in sodium dodecyl sulfate polyacrylamide gel electrophoresis and two enzymatically active peaks in guanidine hydrochloride gel filtration.  相似文献   

4.
A Bernad  A Zaballos  M Salas    L Blanco 《The EMBO journal》1987,6(13):4219-4225
The Bacillus subtilis phage luminal diameter 29 DNA polymerase, involved in protein-primed viral DNA replication, was inhibited by phosphonoacetic acid (PAA), a known inhibitor of alpha-like DNA polymerases, by decreasing the rate of elongation. Three highly conserved regions of amino acid homology, found in several viral alpha-like DNA polymerases and in the luminal diameter 29 DNA polymerase, one of them proposed to be the PAA binding site, were also found in the T4 DNA polymerase. This prokaryotic enzyme was highly sensitive to the drugs aphidicolin and the nucleotide analogues butylanilino dATP (BuAdATP) and butylphenyl dGTP (BuPdGTP), known to be specific inhibitors of eukaryotic alpha-like DNA polymerases. Two potential DNA polymerases from the linear plasmid pGKL1 from yeast and the S1 mitochondrial DNA from maize have been identified, based on the fact that they contain the three conserved regions of amino acid homology. Comparison of DNA polymerases from prokaryotic and eukaryotic origin showed extensive amino acid homology in addition to highly conserved domains. These findings reflect evolutionary relationships between hypothetically unrelated DNA polymerases.  相似文献   

5.
Studies on DNA polymerases and topoisomerases in archaebacteria   总被引:1,自引:0,他引:1  
We have isolated DNA polymerases and topoisomerases from two thermoacidophilic archaebacteria: Sulfolobus acidocaldarius and Thermoplasma acidophilum. The DNA polymerases are composed of a single polypeptide with molecular masses of 100 and 85 kDa, respectively. Antibodies against Sulfolobus DNA polymerase did not cross react with Thermoplasma DNA polymerase. Whereas the major DNA topoisomerase activity in S. acidocaldarius is an ATP-dependent type I DNA topoisomerase with a reverse gyrase activity, the major DNA topoisomerase activity in T. acidophilum is a ATP-independent relaxing activity. Both enzymes resemble more the eubacterial than the eukaryotic type I DNA topoisomerase. We have found that small plasmids from halobacteria are negatively supercoiled and that DNA topoisomerase II inhibitors modify their topology. This suggests the existence of an archaebacterial type II DNA topoisomerase related to its eubacterial and eukaryotic counterparts. As in eubacteria, novobiocin induces positive supercoiling of halobacterial plasmids, indicating the absence of a eukaryotic-like type I DNA topoisomerase that relaxes positive superturns.  相似文献   

6.
All archaeal DNA-dependent DNA polymerases sequenced to date are homologous to family B DNA polymerases from eukaryotes and eubacteria. Presently, representatives of the euryarchaeote division of archaea appear to have a single family B DNA polymerase, whereas two crenarchaeotes, Pyrodictium occultum and Sulfolobus solfataricus, each possess two family B DNA polymerases. We have found the gene for yet a third family B DNA polymerase, designated B3, in the crenarchaeote S. solfataricus P2. The encoded protein is highly divergent at the amino acid level from the previously characterized family B polymerases in S. solfataricus P2 and contains a number of nonconserved amino acid substitutions in catalytic domains. We have cloned and sequenced the ortholog of this gene from the closely related Sulfolobus shibatae. It is also highly divergent from other archaeal family B DNA polymerases and, surprisingly, from the S. solfataricus B3 ortholog. Phylogenetic analysis using all available archaeal family B DNA polymerases suggests that the S. solfataricus P2 B3 and S. shibatae B3 paralogs are related to one of the two DNA polymerases of P. occultum. These sequences are members of a group which includes all euryarchaeote family B homologs, while the remaining crenarchaeote sequences form another distinct group. Archaeal family B DNA polymerases together constitute a monophyletic subfamily whose evolution has been characterized by a number of gene duplication events.  相似文献   

7.
There is rising evidence that cancer development is associated from its earliest stages with DNA replication stress, a major source of spontaneous genomic instability. However, the origin of these replication defects has remained unclear. We have investigated the consequences of upregulating error-prone DNA polymerases (pol) beta and kappa on chromosomal DNA replication. These enzymes are misregulated in different types of cancers and induce major chromosomal instabilities when overexpressed at low levels. Here, we have used DNA combing to show that a moderate overexpression of pol beta or pol kappa is sufficient to impede replication fork progression and to promote the activation of additional replication origins. Interestingly, alterations of the normal replication program induced by excess error-prone polymerases were not detected by the replication checkpoint. We therefore propose that upregulation of error-prone DNA polymerases induces a checkpoint-blind replication stress that contributes to genomic instability and to cancer development.  相似文献   

8.
Deamination of cytosine to uracil in a G-C base pair is a major promutagenic event, generating G-C-->A-T mutations if not repaired before DNA replication. Archaeal family B DNA polymerases are uniquely able to recognize unrepaired uracil in a template strand and stall polymerization upstream of the lesion, thereby preventing the irreversible fixation of an A-T mutation. We have now identified a 'pocket' in the N-terminal domains of archaeal DNA polymerases that is positioned to interact with the template strand and provide this ability. The structure of this pocket provides interacting groups that discriminate uracil from the four normal DNA bases (including thymine). These groups are conserved in archaeal polymerases but absent from homologous viral polymerases that are unable to recognize uracil. Using site-directed mutagenesis, we have confirmed the biological role of this pocket and have engineered specific mutations in the Pfu polymerase that confer the ability to read through template-strand uracils and carry out PCR with dUTP in place of dTTP.  相似文献   

9.
Most classical DNA polymerases, which function in normal DNA replication and repair, are unable to synthesize DNA opposite damage in the template strand. Thus in order to replicate through sites of DNA damage, cells are equipped with a variety of nonclassical DNA polymerases. These nonclassical polymerases differ from their classical counterparts in at least two important respects. First, nonclassical polymerases are able to efficiently incorporate nucleotides opposite DNA lesions while classical polymerases are generally not. Second, nonclassical polymerases synthesize DNA with a substantially lower fidelity than do classical polymerases. Many nonclassical polymerases are members of the Y-family of DNA polymerases, and this article focuses on the mechanisms of the four eukaryotic members of this family: polymerase eta, polymerase kappa, polymerase iota, and the Rev1 protein. We discuss the mechanisms of these enzymes at the kinetic and structural levels with a particular emphasis on how they accommodate damaged DNA substrates. Work over the last decade has shown that the mechanisms of these nonclassical polymerases are fascinating variations of the mechanism of the classical polymerases. The mechanisms of polymerases eta and kappa represent rather minor variations, while the mechanisms of polymerase iota and the Rev1 protein represent rather major variations. These minor and major variations all accomplish the same goal: they allow the nonclassical polymerases to circumvent the problems posed by the template DNA lesion.  相似文献   

10.
Replication of damaged DNA by translesion synthesis in human cells   总被引:6,自引:0,他引:6  
Lehmann AR 《FEBS letters》2005,579(4):873-876
Most types of DNA damage block the passage of the replication machinery. In order to bypass these blocks, cells employ special translesion synthesis (TLS) DNA polymerases, which have lower stringency than replicative polymerases. DNA polymerase eta is the major polymerase responsible for bypassing UV lesions in DNA and its absence results in the variant form of the genetic disorder, xeroderma pigmentosum. Other TLS polymerases have specificities for different types of damage, but their precise roles inside the cell have not yet been established. These polymerases are located in replication factories during DNA replication and the polymerase sliding clamp PCNA plays an important role in mediating switching between different polymerases.  相似文献   

11.
Yeast DNA polymerases I and III have been well characterized physically, biochemically, genetically and immunologically. DNA polymerase II is present in very small amounts, and only partially purified preparations have been available for characterization, making comparison with DNA polymerases I and III difficult. Recently, we have shown that DNA polymerases II and III are genetically distinct (Sitney et al., 1989). In this work, we show that polymerase II is also genetically distinct from polymerase I, since polymerase II can be purified in equal amounts from wild-type and mutant strains completely lacking DNA polymerase I activity. Thus, yeast contains three major nuclear DNA polymerases. The core catalytic subunit of DNA polymerase II was purified to near homogeneity using a reconstitution assay. Two factors that stimulate the core polymerase were identified and used to monitor activity during purification and analysis. The predominant species of the most highly purified preparation of polymerase II is 132,000 Da. However, polymerase activity gels suggest that the 132,000-Da form of DNA polymerase II is probably an active proteolytic fragment derived from a 170,000-Da protein. The highly purified polymerase fractions contain a 3'----5'-exonuclease activity that purifies at a constant ratio with polymerase during the final two purification steps. However, DNA polymerase II does not copurify with a DNA primase activity.  相似文献   

12.
DNA Polymerases from Human Cells   总被引:44,自引:0,他引:44  
Nuclei of HeLa cells contain two separable DNA polymerases which have different properties and cytoplasm contains a single DNA polymerase activity similar to one of the nuclear DNA polymerases. The same distribution of DNA polymerases has been found in the nucleus and cytoplasm of WI-38 cells, a normal diploid human cell line.  相似文献   

13.
A modified method for the detection of DNA polymerases in cell extracts and purified enzyme preparations after electrophoresis in polyacrylamide gradient cylindrical gels is described. The technique, which is based on direct assay of activity in a reaction mixture during elution of DNA polymerases from gel slices, was applied to the pursuit of enzyme forms of Streptomyces aureofaciens DNA polymerase during purification procedure. In a crude extract of S. aureofaciens mycelium many catalytically active forms of DNA polymerase ranging from 35 to 860 kDa were detected. After purification, that included mycelium homogenization, precipitation of nucleic acids by polyethylene glycol, DEAE-Sephadex, QAE-Sephadex and DNA-Sepharose chromatography, higher molecular mass forms of more than 172 kDa have not been found. The lower molecular mass forms were separated into two groups by DNA-Sepharose chromatography. On the basis of their characterization, it is assumed that the lower molecular mass forms are produced by proteolysis and the major form found after purification of S. aureofaciens DNA polymerase in the presence of suitable proteinase inhibitors should be a protein of 172 kDa.  相似文献   

14.
We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.  相似文献   

15.
Deranged oxidative metabolism is a property of many tumour cells. Oxidation of the deoxynucleotide triphosphate (dNTP) pool, as well as DNA, is a major cause of genome instability. Here, we report that two Y-family DNA polymerases of the archaeon Sulfolobus solfataricus strains P1 and P2 incorporate oxidized dNTPs into nascent DNA in an erroneous manner: the polymerases exclusively incorporate 8-OH-dGTP opposite adenine in the template, and incorporate 2-OH-dATP opposite guanine more efficiently than opposite thymine. The rate of extension of the nascent DNA chain following on from these incorporated analogues is only slightly reduced. These DNA polymerases have been shown to bypass a variety of DNA lesions. Thus, our results suggest that the Y-family DNA polymerases promote mutagenesis through the erroneous incorporation of oxidized dNTPs during DNA synthesis, in addition to facilitating translesion DNA synthesis. We also report that human DNA polymerase η, a human Y-family DNA polymerase, incorporates the oxidized dNTPs in a similar erroneous manner.  相似文献   

16.
For many years, Taq polymerase has served as the stalwart enzyme in the PCR amplification of DNA. However, a major limitation of Taq is its inability to amplify damaged DNA, thereby restricting its usefulness in forensic applications. In contrast, Y-family DNA polymerases, such as Dpo4 from Sulfolobus solfataricus, can traverse a wide variety of DNA lesions. Here, we report the identification and characterization of five novel thermostable Dpo4-like enzymes from Acidianus infernus, Sulfolobus shibatae, Sulfolobus tengchongensis, Stygiolobus azoricus and Sulfurisphaera ohwakuensis, as well as two recombinant chimeras that have enhanced enzymatic properties compared with the naturally occurring polymerases. The Dpo4-like polymerases are moderately processive, can substitute for Taq in PCR and can bypass DNA lesions that normally block Taq. Such properties make the Dpo4-like enzymes ideally suited for the PCR amplification of damaged DNA samples. Indeed, by using a blend of Taq and Dpo4-like enzymes, we obtained a PCR amplicon from ultraviolet-irradiated DNA that was largely unamplifyable with Taq alone. The inclusion of thermostable Dpo4-like polymerases in PCRs, therefore, augments the recovery and analysis of lesion-containing DNA samples, such as those commonly found in forensic or ancient DNA molecular applications.  相似文献   

17.
Significant advances have been made recently in the study of polymerases. First came the realization that there are many more DNA polymerases than originally thought; indeed, no fewer than 14 template-dependent DNA polymerases are found in mammals. Concurrent structural studies of DNA polymerases bound to DNA and incoming nucleotide have revealed how these remarkable copying machines select the correct deoxynucleoside triphosphate among a sea of nucleotides. A whole new level of insight into DNA replication fidelity has been reached as a result of recently determined crystal structures of DNA lesions in the context of the active sites of repair, replicative and specialized DNA polymerases. These structures illustrate why some lesions can be bypassed readily, whereas others are strong blocks to DNA replication.  相似文献   

18.
Lehmann AR 《Mutation research》2002,509(1-2):23-34
All cells need not only to remove damage from their DNA, but also to be able to replicate DNA containing unrepaired damage. In mammalian cells, the major process by which cells are able to replicate damaged templates is translesion synthesis, the direct synthesis of DNA past altered bases. Crucial to this process is a series of recently discovered DNA polymerases. Most of them belong to a new family of polymerases designated the Y-family, which have conserved sequences in the catalytic N-terminal half of the proteins. These polymerases have different efficiencies and specificities in vitro depending on the type of damage in the template.One of them, DNA polymerase eta, is defective in xeroderma pigmentosum variants, and overwhelming evidence suggests that this is the polymerase that carries out translesion synthesis past UV-induced cyclobutane pyrimidine dimers in vivo. DNA polymerase eta is localised in replication factories during DNA replication and accumulates at sites of stalled replication forks. Many studies have been carried out on the properties of the other polymerases in vitro, but there is as yet very little evidence for their specific roles in vivo.  相似文献   

19.
DNA polymerases without the 3' exonuclease function (exo(-) pol) have been widely used in sequencing and SNP genotyping. As a major player that expedited the coming of the postgenomic era, exo(-) polymerases worked remarkably well in the Human Genome Sequencing Project. However, it has become a challenge for this class of polymerases to efficiently screen the large number of SNPs that are found in the human genome. For more than three decades it has been recognized that polymerase fidelity varied according to the presence of proofreading activity that is mediated by its internal 3' exonuclease. Polymerases with proofreading function are famous for their high fidelity in DNA replication both in vivo and in vitro, but this well-known class of polymerases has been almost completely neglected in genetic analysis in the postgenomic era. We speculate that exo(+) polymerases may exhibit higher nucleotide identification ability when compared to exo- polymerases for an in vitro genetic analysis. With the application of exo(+) polymerases in SNP assays, a novel mechanism for the maintenance of DNA replication, the on/off switch, was discovered. Two new SNP assays have been developed to carry out genome-wide genotyping, taking advantage of the enzymatic properties of exo(+) polymerases. Furthermore, the on/off switch mechanism embodies a powerful nucleotide identification ability, which can be used to discriminate the bases that are upstream of the 3' terminus, and thus defines a new concept in de novo sequencing technology. Application of exo(+) polymerases to genetic analysis, and especially SNP assays, will greatly accelerate the pace to personalized medicine.  相似文献   

20.
Fidelity of DNA synthesis, catalyzed by DNA polymerases, is critical for the maintenance of the integrity of the genome. Mutant polymerases with elevated accuracy (antimutators) have been observed, but these mainly involve increased exonuclease proofreading or large decreases in polymerase activity. We have determined the tolerance of DNA polymerase for amino acid substitutions in the active site and in different segments of E. coli DNA polymerase I and have determined the effects of these substitutions on the fidelity of DNA synthesis. We established a DNA polymerase I mutant library, with random substitutions throughout the polymerase domain. This random library was first selected for activity. The essentiality of DNA polymerases and their sequence and structural conservation suggests that few amino acid substitutions would be tolerated. However, we report that two-thirds of single base substitutions were tolerated without loss of activity, and plasticity often occurs at evolutionarily conserved regions. We screened 408 members of the active library for alterations in fidelity of DNA synthesis in Escherichia coli expressing the mutant polymerases and carrying a second plasmid containing a beta-lactamase reporter. Mutation frequencies varied from 1/1000- to 1000-fold greater compared with wild type. Mutations that produced an antimutator phenotype were distributed throughout the polymerase domain, with 12% clustered in the M-helix. We confirmed that a single mutation in this segment results in increased base discrimination. Thus, this work identifies the M-helix as a determinant of fidelity and suggests that polymerases can tolerate many substitutions that alter fidelity without incurring major changes in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号