首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo B  Yuan Y  Wu Y  Xie Q  Yao S 《Analytical biochemistry》2002,305(2):139-148
A bulk acoustic wave (BAW) impedance sensor has been applied for in situ monitoring of the whole process of DNA oxidative damage induced by the vitamin C (Vc)-Fe (III) system, based on its real-time responses to the density-viscosity change of the tested solution due to the damages occurring on the DNA molecules. The results showed that Vc exhibited two conflicting effects, i.e., pro-oxidation and anti-oxidation on the DNA at different Vc concentrations in the damage system, and the "threshold" concentration of Vc for these two effects was estimated to be about 100 micromol/L. The end-point frequency change of the sensor (Deltaf(m)) was found to be linearly related to the initial concentration of the soybean DNA (C(DNA)) in the range of 40-1000 microg/mL, and the exponential relationship between the frequency change (Deltaf(0)) vs damaging time suggested that the Fe (III)-mediated DNA damage by Vc could be described as a first-order kinetics reaction. The effects of variations in concentrations of Vc and Fe3+ on the DNA oxidative damage were discussed, and based on investigations for the enhancing influence of H2O2 and inhibiting influence of HO* scavengers on the DNA damage, the nature and physiological toxicity of the damage in biological system were also examined. In addition, UV-vis spectra and electrophoresis analysis were also used, and the experimental observations were in good agreement with the above results.  相似文献   

2.
The effect of strong static magnetic field on lymphocytes   总被引:11,自引:0,他引:11  
We investigated whether static electromagnetic fields (EMFs) at a flux density of 4.75 T, generated by an NMR apparatus (NMRF), could promote movements of Ca2+, cell proliferation, and the eventual production of proinflammatory cytokines in human peripheral blood mononuclear cells (PBMC) as well as in Jurkat cells, after exposure to the field for 1 h. The same study was also performed after activation of cells with 5 mg/ml phytohaemagglutinin (PHA). Our results clearly demonstrate that static NMRF exposure has neither proliferative, nor activating, nor proinflammatory effects on both normal and PHA activated PBMC. Moreover, the concentration of interleukin-1beta, interleukin-2, interleukin-6, interferon, and tumour necrosis factor alpha (TNFalpha) remained unvaried in exposed cells. Exposure of Jurkat cells statistically decreased the proliferation and the proliferation indexes, which 24 and 48 h after exposure were 0.7 +/- 0.29 and 0.87 +/- 0.12, respectively. Moreover, in Jurkat cells the [Ca2+]i was higher than in PBMC and was reduced significantly to about one half after exposure. This is consistent with the decrease of proliferation and with the low levels of IL-2 measured. On the whole, our data suggest that NMRF exposure failed to affect the physiologic behaviour of normal lymphomonocytes. Instead in Jurkat cells, by changing the properties of cell membranes, NMRF can influence Ca2+ transport processes, and hence Ca2+ homeostasis with improvement of proliferation.  相似文献   

3.
4.
静态强磁场对枯草芽胞杆菌的影响研究   总被引:2,自引:0,他引:2  
目的:研究静态强磁场下微生物的生物学效应.方法:以超导磁体产生的静态强磁场为基础,枯草芽孢杆菌为模式生物,通过测定生长曲线、芽胞生成率、蛋白酶表达量、蛋白酶活力等研究静态强磁场条件下微生物性状的变化.结果:强磁场可以影响枯草芽胞杆菌的芽胞形成速率,抑制营养体的死亡;测定菌体生长过程中蛋白酶的含量以及碱性蛋白酶和中性蛋白酶的酶活力,发现磁场处理前后蛋白酶的含量没有发生显著性变化,处理组碱性蛋白酶的酶活力明显高于对照组,而中性蛋白酶酶活力则低于对照组.结论:强磁场可以延长枯草芽孢杆菌的世代周期,降低菌体死亡率,对细菌酶活性的影响因酶的种类不同而异.  相似文献   

5.
Age-dependent effect of Static Magnetic Field (SMF) on rats in a condition of active and inactive Na+/K+ pump was studied for comparison of brain tissues hydration state changes and magnetic sensitivity. Influence of 15?min 0, 2 Tesla (T) SMF on brain tissue hydration of three aged groups of male albino rats was studied. Tyrode’s physiological solution and 10?4?M ouabain was used for intraperitoneal injections. For animal immobilization, the liquid nitrogen was used and the definition of tissue water content was performed by tissue drying method. Initial water content in brain tissues of young animals is significantly higher than in those of adult and aged ones. SMF exposure leads to decrease of water content in brain tissues of young animals and increase in brain tissues of adult and aged ones. In case of ouabain-poisoned animals, SMF gives reversal effects on brain tissue’s hydration both in young and aged animals, while no significant effect on adults is observed. It is suggested that initial state of tissue hydration could play a crucial role in animal age-dependent magnetic sensitivity and the main reason for this could be age-dependent dysfunction of Na+/K+ pump.  相似文献   

6.
Spreading evidence suggests that geomagnetic field (GMF) modulates artificial magnetic fields biological effect and associated with increased cardiovascular morbidity. To explore the underlying physiological mechanism we studied 350 mT static magnetic field (SMF) effect on arterial baroreflex-mediated skin microcirculatory response in conjunction with actual geomagnetic activity, reflected by K and K p indices. Fourteen experiments were performed in rabbits sedated by pentobarbital infusion (5 mg/kg/h). Mean femoral artery blood pressure, heart rate, and the ear lobe skin microcirculatory blood flow, measured by microphotoelectric plethysmogram (MPPG), were simultaneously recorded before and after 40 min of NdFeB magnets local exposure to sinocarotid baroreceptors. Arterial baroreflex sensitivity (BRS) was estimated from heart rate/blood pressure response to intravenous bolus injections of nitroprusside and phenylephrine. We found a significant positive correlation between SMF-induced increase in BRS and increment in microvascular blood flow (ΔBRS with ΔMPPG, r=0.7, p<0.009) indicated the participation of the arterial baroreflex in the regulation of the microcirculation and its enhancement after SMF exposure. Geomagnetic disturbance, as opposed to SMF, decreased both microcirculation and BRS, and counteracted SMF-induced increment in microcirculatory blood flow (K-index with ΔMPPG; r s=−0.55, p<0.041). GMF probably affected central baroreflex pathways, diminishing SMF direct stimulatory effect on sinocarotid baroreceptors and on baroreflex-mediated vasodilatatory response. The results herein may thus point to arterial baroreflex as a possible physiological mechanism for magnetic-field cardiovascular effect. It seems that geomagnetic disturbance modifies artificial magnetic fields biological effect and should be taken into consideration in the assessment of the final effect. An erratum to this article can be found at  相似文献   

7.
The effect of static magnetic field of induction 0.005 T, 0.12 T and 0.3 T applied in daily rhythm (one hour every day) for the period of 2 weeks and 4 weeks produces an increase of FDP level in the serum. Especially, the effect elicited by the magnetic field applied 2 weeks prior to experimental thrombosis development. The range of changes was related to the duration of the exposure to the magnetic field. No dependence of the degree of induction of the magnetic field was established.  相似文献   

8.
The influence of the static magnetic field on magnetic induction 0.005 T--0.3 T on the protein concentration in serum of guinea-pigs with regard of twenty four hours rhythm was investigated. The range of occurrenced changes were determined by the duration of the static homogeneous magnetic field.  相似文献   

9.
The present study deals with the analgesic effect induced by static magnetic fields (SMF) in mice exposed to the field with their whole body. It discusses how the effect depends on the distribution of the magnetic field, that is, on the specification and arrangement of the applied individual permanent magnets. A critical analysis of different magnet arrangements is given. As a result the authors propose a magnet arrangement recipe that achieves an analgesic effect of over 80% in the writhing test. This is a widely accepted screening method for animal pain and predictor of human experimental results. As a non-drug, non-invasive, non-contact, non-pain, non-addictive method for analgesia with immediate and long-lasting effect based on the stimulus of the endogenous opioid network, the SMF treatment may attract the attention of medical doctors, nurses, magnet therapists, veterinarians, physiotherapists, masseurs, and fitness trainers among others.  相似文献   

10.
11.
Anaerobic ammonium oxidation (anammox) process has been becoming a promising technology for the removal of nitrogenous contaminants from wastewater. In short-term batch tests, we observed the anaerobic ammonium oxidizing activity of anammox consortium increased as the magnetic field varied in the range of 16.8-95.0mT. A maximum 50% increase was obtained at the value of 75.0mT. In order to study long-term effect of magnetic field on anammox consortium, an anammox reactor with magnetic field of 60.0mT was operated in laboratory-scale. The results demonstrated that a significant 30% increase in maximum nitrogen removal rate and an approximate 1/4 saving in cultivation time were achieved by using the magnetic system. Microbiological composition analysis showed that bacterial diversity in the reactor decreased under magnetic-exposed condition. Nevertheless, some strains belonging to Planctomycetales were highly enriched. These findings indicated that the magnetic field was useful and reliable for fast start-up of anammox process since it was proved as a simple and convenient approach to enhance anaerobic ammonium oxidizing activity.  相似文献   

12.
利用压电体声波阻抗分析法实时动态监测了拟环纹豹蛛Pardosa pseudoannulata中肠蛋白消化酶对酪蛋白的酶促水解过程及不同浓度梯度(0.008%、0.016%、0.024%和0.032%)的甲胺磷农药对酶活性的影响,并用紫外分光光度法进行了验证。结果表明,合适低剂量(0.008%)的甲胺磷农药可显著地增强拟环纹豹蛛蛋白消化酶的活性,较高剂量(0.032%)的农药却显著抑制蛋白消化酶的活性,且水解过程稳态频移值可准确地反映酶活性与农药浓度的关系。本工作为研究低剂量农药增强蜘蛛控虫力的机理及酶活性的快速检测提供了一种可行的新方法。  相似文献   

13.
45Ca2+ efflux from neonatal isolated chick brains was measured. The brains were exposed to uniform or nonuniform static magnetic fields. The field intensity ranged from 200-900 mT. The exposure took place during incubation and/or when efflux was being measured. No difference appeared in the 45Ca2+ efflux between controls and exposed brains.  相似文献   

14.
15.
16.
17.
Effects of high static magnetic field exposure on different DNAs   总被引:4,自引:0,他引:4  
The effects of magnetic fields produced by permanent magnets on different DNA sources were investigated in vivo and in vitro. Escherichia coli DNA, plasmid, and amplification products of different lengths were used as the magnetic field target. The in vivo assays did not reveal any DNA alterations following exposure, demonstrating the presence of cell dependent mechanisms, such as the repair system and the buffering action of the heat shock proteins DNA K/J (Hsp 70/40). The in vitro assays displayed interactions between the magnetic field and DNA, revealing principally that magnetic field exposure induces DNA alterations in terms of point mutations. We speculate that the magnetic field can perturb DNA stability interacting with DNA directly or potentiating the activity of oxidant radicals. This genotoxic effect of the magnetic field, however, is minimized in living organisms due to the presence of protective cellular responses.  相似文献   

18.
19.
化学疗法为肿瘤临床治疗的常规方法,存在毒副作用大、抗药性强等缺陷。为了提高药物的利用效率,减少药物引起的毒副作用,将8.8 m T稳恒磁场分别与顺铂、阿霉素联用,经MTT检测发现磁场与药物联用可对肝癌细胞Hepa1-6生长具有协同抑制的效应,经HE染色发现联合处理组细胞发生明显的形态学改变。流式细胞仪检测显示磁场能增加顺铂对G2/M期细胞的滞留,而磁场与阿霉素共同作用可将细胞阻止于G1期和G2/M期。经彗星电泳检测表明磁场能够增强药物对DNA的损伤,且原子力显微镜观察发现联合处理组细胞膜表面出现较大且较深的孔洞,表面结构破坏严重。实验结果表明,抗肿瘤药物与磁场联用技术可有效抑制肿瘤细胞的生长,减少药物的使用浓度,为将抗肿瘤药物与磁场应用于临床治疗恶性肿瘤提供了一个全新的思路与策略。  相似文献   

20.
This review is aimed to summarize the experimental researches in the influences of static magnetic field on laboratory rodent models, reported by laboratory scientists, experimental technicians, clinical surgeons, animal veterinarians, and other researchers. Past studies suggested that static magnetic field-singly applied or used combined with other physical or chemical substances-significantly relieved some pains and ameliorated certain diseases in different organ systems, e.g. hypertension, osteoporosis, neuralgia, diabetes and leukemia etc. But on the other hand, some harmful events have also been observed in a number of investigations, from cellular level to fetal development. So exposure to static magnetic field might have dual effects on experimental rodent in various environments, viz. there are potentially therapeutic benefits, as well as adverse effects from it. The positive effect may relate to moderate intensities, while negative influence seems to be in connection with acute strong static magnetic fields. In addition, different orientations of static magnetic field exert different degrees of impact. Thus, the bioeffects of static magnetic field exposure on mice/rats depend on magnetic field intensities, durations and directions, though the exactly relationship between them is still vague. Further researches need to perform with appropriate methodologies, ingenious designs repeatedly and systemically, not only in animal models, but also in human volunteers and patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号