首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerous nonribosomal trans-acting factors involved in pre-rRNA processing have been characterized, but few of them are specifically required for the last cytoplasmic steps of 18S rRNA maturation. We have recently demonstrated that Rrp10p/Rio1p is such a factor. By BLAST analysis, we identified the product of a previously uncharacterized essential gene, YNL207W/RIO2, called Rio2p, that shares 43% sequence similarity with Rrp10p/Rio1p. Rio2p homologues were identified throughout the Archaea and metazoan species. We show that Rio2p is a cytoplasmic-nuclear protein and that its depletion blocks 18S rRNA production, leading to 20S pre-rRNA accumulation. In situ hybridization reveals that in Rio2p-depleted cells, 20S pre-rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. We also show that both Rio1p and Rio2p accumulate in the nucleus of crm1-1 cells at the nonpermissive temperature. Nuclear as well as cytoplasmic Rio2p and Rio1p cosediment with pre-40S particles. These results strongly suggest that Rio2p and Rrp10p/Rio1p are shuttling proteins which associate with pre-40S particles in the nucleus and they are not necessary for export of the pre-40S complexes but are absolutely required for the cytoplasmic maturation of 20S pre-rRNA at site D, leading to mature 40S ribosomal subunits.  相似文献   

2.
Saccharomyces cerevisiae Rio2p (encoded by open reading frame Ynl207w) is an essential protein of unknown function that displays significant sequence similarity to Rio1p/Rrp10p. The latter was recently shown to be an evolutionarily conserved, predominantly cytoplasmic serine/threonine kinase whose presence is required for the final cleavage at site D that converts 20 S pre-rRNA into mature 18 S rRNA. A data base search identified homologs of Rio2p in a wide variety of eukaryotes and Archaea. Detailed sequence comparison and in vitro kinase assays using recombinant protein demonstrated that Rio2p defines a subfamily of protein kinases related to, but both structurally and functionally distinct from, the one defined by Rio1p. Failure to deplete Rio2p in cells containing a GAL-rio2 gene and direct analysis of Rio2p levels by Western blotting indicated the protein to be low abundant. Using a GAL-rio2 gene carrying a point mutation that reduces the kinase activity, we found that depletion of this mutant protein blocked production of 18 S rRNA due to inhibition of the cleavage of cytoplasmic 20 S pre-rRNA at site D. Production of the large subunit rRNAs was not affected. Thus, Rio2p is the second protein kinase that is essential for cleavage at site D and the first in which the processing defect can be linked to its enzymatic activity. Contrary to Rio1p/Rrp10p, however, Rio2p appears to be localized predominantly in the nucleus.  相似文献   

3.
4.
RRP5 is required for formation of both 18S and 5.8S rRNA in yeast.   总被引:17,自引:1,他引:16       下载免费PDF全文
J Venema  D Tollervey 《The EMBO journal》1996,15(20):5701-5714
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S) are synthesized as a single precursor which is subsequently processed into the mature rRNAs by a complex series of cleavage and modification reactions. In the yeast Saccharomyces cerevisiae, the early pre-rRNA cleavages at sites A0, A1 and A2, required for the synthesis of 18S rRNA, are inhibited in strains lacking RNA or protein components of the U3, U14, snR10 and snR30 small nucleolar ribonucleoproteins (snoRNPs). The subsequent cleavage at site A3, required for formation of the major, short form of 5.8S rRNA, is carried out by another ribonucleoprotein, RNase MRP. A screen for mutations showing synthetic lethality with deletion of the non-essential snoRNA, snR10, identified a novel gene, RRP5, which is essential for viability and encodes a 193 kDa nucleolar protein. Genetic depletion of Rrp5p inhibits the synthesis of 18S rRNA and, unexpectedly, also of the major short form of 5.8S rRNA. Pre-rRNA processing is concomitantly impaired at sites A0, A1, A2 and A3. This distinctive phenotype makes Rrp5p the first cellular component simultaneously required for the snoRNP-dependent cleavage at sites A0, A1 and A2 and the RNase MRP-dependent cleavage at A3 and provides evidence for a close interconnection between these processing events. Putative RRP5 homologues from Caenorhabditis elegans and humans were also identified, suggesting that the critical function of Rrp5p is evolutionarily conserved.  相似文献   

5.
The Saccharomyces cerevisiae protein Rrp43p co-purifies with four other 3'-->5' exoribonucleases in a complex that has been termed the exosome. Rrp43p itself is similar to prokaryotic RNase PH. Individual exosome subunits have been implicated in the 3' maturation of the 5.8S rRNA found in 60S ribosomes and the 3' degradation of mRNAs. However, instead of being deficient in 60S ribosomes, Rrp43p-depleted cells were deficient in 40S ribosomes. Pulse-chase and steady-state northern analyses of pre-RNA and rRNA levels revealed a significant delay in the synthesis of both 25S and 18S rRNAs, accompanied by the stable accumulation of 35S and 27S pre-rRNAs and the under-accumulation of 20S pre-rRNA. In addition, Rrp43p-depleted cells accumulated a 23S aberrant pre-rRNA and a fragment excised from the 5' ETS. Therefore, in addition to the maturation of 5.8S rRNA, Rrp43p is required for the maturation 18S and 25S rRNA.  相似文献   

6.
We report the characterization of early pre-ribosomal particles. Twelve TAP-tagged components each showed nucleolar localization, sedimented at approximately 90S on sucrose gradients, and coprecipitated both the 35S pre-rRNA and the U3 snoRNA. Thirty-five non-ribosomal proteins were coprecipitated, including proteins associated with U3 (Nop56p, Nop58p, Sof1p, Rrp9, Dhr1p, Imp3p, Imp4p, and Mpp10p) and other factors required for 18S rRNA synthesis (Nop14p, Bms1p, and Krr1p). Mutations in components of the 90S pre-ribosomes impaired 40S subunit assembly and export. Strikingly, few components of recently characterized pre-60S ribosomes were identified in the 90S pre-ribosomes. We conclude that the 40S synthesis machinery predominately associates with the 35S pre-rRNA factors, whereas factors required for 60S subunit synthesis largely bind later, showing an unexpected dichotomy in binding.  相似文献   

7.
Yeast Rrp5p, one of the few trans-acting proteins required for the biogenesis of both ribosomal subunits, has a remarkable two-domain structure. Its C-terminal region consists of seven tetratricopeptide motifs, several of which are crucial for cleavages at sites A(0) to A(2) and thus for the formation of 18S rRNA. The N-terminal region, on the other hand, contains 12 S1 RNA-binding motifs, most of which are required for processing at site A(3) and thus for the production of the short form of 5.8S rRNA. Yeast cells expressing a mutant Rrp5p protein that lacks S1 motifs 10 to 12 (mutant rrp5Delta6) have a normal growth rate and wild-type steady-state levels of the mature rRNA species, suggesting that these motifs are irrelevant for ribosome biogenesis. Here we show that, nevertheless, in the rrp5Delta6 mutant, pre-rRNA processing follows an alternative pathway that does not include the cleavage of 32S pre-rRNA at site A(2). Instead, the 32S precursor is processed directly at site A(3), producing exclusively 21S rather than 20S pre-rRNA. This is the first evidence that the 21S precursor, which was observed previously only in cells showing a substantial growth defect or as a minor species in addition to the normal 20S precursor, is an efficient substrate for 18S rRNA synthesis. Maturation of the 21S precursor occurs via the same endonucleolytic cleavage at site D as that used for 20S pre-rRNA maturation. The resulting D-A(3) fragment, however, is degraded by both 5'-->3' and 3'-->5' exonuclease digestions, the latter involving the exosome, in contrast to the exclusively 5'-->3' exonucleolytic digestion of the D-A(2) fragment. We also show that rrp5Delta6 cells are hypersensitive to both hygromycin B and cycloheximide, suggesting that, despite their wild-type growth rate, their preribosomes or ribosomes may be structurally abnormal.  相似文献   

8.
Saccharomyces cerevisiae contains three nonessential genes (NGL1, NGL2, and NGL3) that encode proteins containing a domain with similarity to a Mg(2+)-dependent endonuclease motif present in the mRNA deadenylase Ccr4p. We have investigated a possible role of these proteins in rRNA processing, because for many of the pre-rRNA processing steps, the identity of the responsible nuclease remains elusive. Analysis of RNA isolated from cells in which the NGL2 gene has been inactivated (ngl2delta) demonstrates that correct 3'-end formation of 5.8S rRNA at site E is strictly dependent on Ngl2p. No role in pre-rRNA processing could be assigned to Ngl1p and Ngl3p. The 3'-extended 5.8S rRNA formed in the ngl2delta mutant is slightly shorter than the 6S precursor previously shown to accumulate upon combined deletion of the 3' --> 5' exonuclease-encoding REX1 and REX2 genes or upon depletion of the exosomal subunits Rrp40p or Rrp45p. Thus, our data add a further component to the set of nucleases required for correct 3'-end formation of yeast 5.8S rRNA.  相似文献   

9.
Rrp5p is the only ribosomal RNA processing trans-acting factor that is required for the synthesis of both 18S and 5.8S rRNAs in Saccharomyces cerevisiae. Mutational analyses have characterized modified forms of Rrp5p that either affect formation of 18S rRNA by inhibiting cleavage at sites A0/A1/A2, or synthesis of 5.8S rRNA by inhibiting cleavage at site A3. Here, we examine the rRNA maturation process associated with a RRP5 bipartite allele that codes for two noncontiguous parts of the protein. This slow-growing bipartite mutant has a unique rRNA-processing phenotype that proceeds without endonucleolytic cleavage at site A2. In wild-type cells, the A2 cleavage takes place on the 32S pre-rRNA and is responsible for the formation of 20S and 27SA2 species, the precursors of mature 18S and 5.8S/25S rRNAs, respectively. In the bipartite strain, such precursors were not detectable as judged by Northern analysis or in vivo labeling. They were replaced by the aberrant 21S species and the bypassing 27SA3 precursor, both descended from direct cleavage of 32S pre-rRNA at site A3, which provides an alternative rRNA maturation pathway in this strain. The 21S pre-rRNA is the sole detectable and most likely available precursor of 18S rRNA in this particular strain, indicating that 18S rRNA can be directly produced from 21S. Furthermore, 21S species were found associated with 43S preribosomal particles as similarly observed for the 20S pre-rRNA in the wild-type cells.  相似文献   

10.
The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.  相似文献   

11.
The yeast nucleolar protein Rrp5p is the only known trans-acting factor that is essential for the synthesis of both 18S rRNA and the major, short form of 5.8S (5.8Ss) rRNA, which were thought to be produced in two independent sets of pre-rRNA processing reactions. To identify domains within Rrp5p required for either processing pathway, we have analyzed a set of eight deletion mutants that together cover the entire RRP5 sequence. Surprisingly, only one of the deletions is lethal, indicating that regions encompassing about 80% of the protein can be removed individually without disrupting its essential biological function. Biochemical analysis clearly demonstrated the presence of two distinct functional domains. Removal of each of three contiguous segments from the N-terminal half specifically inhibits the formation of 5.8Ss rRNA, whereas deleting part of the C-terminal region of the protein only blocks the production of 18S rRNA. The latter phenotype is also caused by a temperature-sensitive mutation within the same C-terminal region. The two functional regions identified by the mutational analysis appear to be correlated with the structural domains detected by computer analysis. They can even be physically separated, as demonstrated by the fact that full Rrp5p activity can be supplied by two contiguous protein fragments expressed in trans.  相似文献   

12.
Maturation of the 40S ribosomal subunit precursors in mammals mobilizes several non-ribosomal proteins, including the atypical protein kinase RioK2. Here, we have investigated the involvement of another member of the RIO kinase family, RioK3, in human ribosome biogenesis. RioK3 is a cytoplasmic protein that does not seem to shuttle between nucleus and cytoplasm via a Crm1-dependent mechanism as does RioK2 and which sediments with cytoplasmic 40S ribosomal particles in a sucrose gradient. When the small ribosomal subunit biogenesis is impaired by depletion of either rpS15, rpS19 or RioK2, a concomitant decrease in the amount of RioK3 is observed. Surprisingly, we observed a dramatic and specific increase in the levels of RioK3 when the biogenesis of the large ribosomal subunit is impaired. A fraction of RioK3 is associated with the non ribosomal pre-40S particle components hLtv1 and hEnp1 as well as with the 18S-E pre-rRNA indicating that it belongs to a bona fide cytoplasmic pre-40S particle. Finally, RioK3 depletion leads to an increase in the levels of the 21S rRNA precursor in the 18S rRNA production pathway. Altogether, our results strongly suggest that RioK3 is a novel cytoplasmic component of pre-40S pre-ribosomal particle(s) in human cells, required for normal processing of the 21S pre-rRNA.  相似文献   

13.
Bms1p and Tsr1p define a novel family of proteins required for synthesis of 40S ribosomal subunits in Saccharomyces cerevisiae. Both are essential and localize to the nucleolus. Tsr1p shares two extended regions of similarity with Bms1p, but the two proteins function at different steps in 40S ribosome maturation. Inactivation of Bms1p blocks at an early step, leading to disappearance of 20S and 18S rRNA precursors. Also, slight accumulation of an aberrant 23S product and significant 35S accumulation are observed, indicating that pre-rRNA processing at sites A0, A1, and A2 is inhibited. In contrast, depletion of Tsr1p results in accumulation of 20S rRNA. Because processing of 20S to 18S rRNA occurs in the cytoplasm, this suggests that Tsr1p is required for assembly of a transport- or maturation-competent particle or is specifically required for transport of 43S pre-ribosomal particles, but not 60S ribosome precursors, from the nucleus to the cytosol. Finally, Bms1p is a GTP-binding protein, the first found to function in ribosome assembly or rRNA processing.  相似文献   

14.
Eukaryotes have two types of ribosomes containing either 5.8SL or 5.8SS rRNA that are produced by alternative pre-rRNA processing. The exact processing pathway for the minor 5.8SL rRNA species is poorly documented. We have previously shown that the trans-acting factor Rrp5p and the RNA exonuclease Rex4p genetically interact to influence the ratio between the two forms of 5.8S rRNA in the yeast Saccharomyces cerevisiae. Here we report a further analysis of ITS1 processing in various yeast mutants that reveals genetic interactions between, on the one hand, Rrp5p and RNase MRP, the endonuclease required for 5.8SS rRNA synthesis, and, on the other, Rex4p, the RNase III homolog Rnt1p, and the debranching enzyme Dbr1p. Yeast cells carrying a temperature-sensitive mutation in RNase MRP (rrp2-1) exhibit a pre-rRNA processing phenotype very similar to that of the previously studied rrp5-33 mutant: ITS2 processing precedes ITS1 processing, 5.8SL rRNA becomes the major species, and ITS1 is processed at the recently reported novel site A4 located midway between sites A2 and A3. As in the rrp5-Delta3 mutant, all of these phenotypical processing features disappear upon inactivation of the REX4 gene. Moreover, inactivation of the DBR1 gene in rrp2-1, or the RNT1 gene in rrp5-Delta3 mutant cells also negates the effects of the original mutation on pre-rRNA processing. These data link a total of three RNA catabolic enzymes, Rex4p, Rnt1p, and Dbr1p, to ITS1 processing and the relative production of 5.8SS and 5.8SL rRNA. A possible model for the indirect involvement of the three enzymes in yeast pre-rRNA processing is discussed.  相似文献   

15.
RNA-binding proteins mediate the function of all RNAs. Since few distinct RNA-binding domains (RBDs) exist, with most RBDs contacting only a few nucleotides, RNA-binding proteins often combine multiple RNA-binding motifs to achieve a higher affinity and selectivity for their targets. Rrp5, a ribosome assembly factor essential for both 40S and 60S ribosome maturation, is an extreme example as it contains 12 tandem S1 RNA-binding domains. In this study, we use a combination of RNA binding and DMS probing experiments to probe interactions of Rrp5 with pre-rRNA mimics. Our data localize Rrp5's binding site to three distinct regions within internal transcribed spacer 1 (ITS1), the sequence between 18S and 5.8S rRNAs. One of these regions is directly adjacent to a recently uncovered helical structure, which prevents premature cleavage at the 3'-end of 18S rRNA. This finding, together with previous results, suggests a role for Rrp5 in regulating the above-mentioned helical element. Furthermore, we have produced two truncated forms of the protein, Rrp5N and Rrp5C, which together encompass the entire protein and fully restore growth. Quantitative analysis of the RNA affinity of these Rrp5 fragments indicates that the first nine S1 motifs contribute much of Rrp5's RNA affinity, while the last three domains alone provide its specificity for the pre-rRNA. This surprising division of labor is unique, as it suggests that S1 domains can bind RNA both specifically as well as nonspecifically with high affinity; this has important implications for the molecular details of the Rrp5?pre-rRNA complex.  相似文献   

16.
The temperature-sensitive mutation, dob1-1, was identified in a screen for dependence on overexpression of the yeast translation initiation factor eIF4B (Tif3p). Dob1p is an essential putative ATP-dependent RNA helicase. Polysome analyses revealed an under accumulation of 60S ribosomal subunits in the dob1-1 mutant. Pulse-chase labelling of pre-rRNA showed that this was due to a defect in the synthesis of the 5.8S and 25S rRNAs. Northern and primer extension analyses in the dob1-1 mutant, or in a strain genetically depleted of Dob1p, revealed a specific inhibition of the 3' processing of the 5.8S rRNA from its 7S precursor. This processing recently has been attributed to the activity of the exosome, a complex of 3'-->5' exonucleases that includes Rrp4p. In vivo depletion of Dob1p also inhibits degradation of the 5' external transcribed spacer region of the pre-rRNA. A similar phenotype was observed in rrp4 mutant strains and, moreover, the dob1-1 and rrp4-1 mutations show a strong synergistic growth inhibition. We propose that Dob1p functions as a cofactor for the exosome complex that unwinds secondary structures in the pre-rRNA that otherwise block the progression of the 3'-->5' exonucleases.  相似文献   

17.
We have studied the role of the U14 small nucleolar RNA (snoRNA) in pre-rRNA methylation and processing in Xenopus oocytes. Depletion of U14 in Xenopus oocytes was achieved by co-injecting two nonoverlapping antisense oligonucleotides. Focusing on the earliest precursor, depletion experiments revealed that the U14 snoRNA is essential for 2'-O-ribose methylation at nt 427 of the 18S rRNA. Injection of U14-depleted oocytes with specific U14 mutant snoRNAs indicated that conserved domain B, but not domain A, of U14 is required for the methylation reaction. When the effect of U14 on pre-rRNA processing is assayed, we find only modest effects on 18S rRNA levels, and no effect on the type or accumulation of 18S precursors, suggesting a role for U14 in a step in ribosome biogenesis other than cleavage of the pre-rRNA. Xenopus U14 is, therefore, a Box C/D fibrillarin-associated snoRNA that is required for site-specific 2'-O-ribose methylation of pre-rRNA.  相似文献   

18.
Rrp5p is the only protein so far known to be required for the processing of yeast pre-rRNA at both the early sites A0, A1 and A2 leading to 18S rRNA and at site A3, the first step specific for the pathway leading to 5.8S/25S rRNA. Previous in vivo mutational analysis of Rrp5p demonstrated that the first 8 of its 12 S1 RNA-binding motifs are involved in the formation of the 'short' form of 5.8S rRNA (5.8S(S)), which is the predominant species under normal conditions. We have constructed two strains in which the genomic RRP5 gene has been replaced by an rrp5 deletion mutant lacking either S1 motifs 3-5 (rrp5-Delta3) or 5-8 (rrp5-Delta4). The first mutant synthesizes almost exclusively 5.8S(L) rRNA, whereas the second one still produces a considerable amount of the 5.8S(S) species. Nevertheless, both mutations were found to block cleavage at site A3 completely. Instead, a novel processing event occurs at a site in a conserved stem-loop structure located between sites A2 and A3, which we have named A4. A synthetic lethality screen using the rrp5-Delta3 and rrp-Delta4 mutations identified the REX4 gene, which encodes a non-essential protein belonging to a class of related yeast proteins that includes several known 3'-->5' exonucleases. Inactivation of the REX4 gene in rrp5-Delta3 or rrp-Delta4 cells abolished cleavage at A4, restored cleavage at A3 and returned the 5.8S(S):5.8S(L) ratio to the wild-type value. The sl phenotype of the rrp5Delta/rex4(-) double mutants appears to be due to a severe disturbance in ribosomal subunit assembly, rather than pre-rRNA processing. The data provide direct evidence for a crucial role of the multiple S1 motifs of Rrp5p in ensuring the correct assembly and action of the processing complex responsible for cleavage at site A3. Furthermore, they clearly implicate Rex4p in both pre-rRNA processing and ribosome assembly, even though this protein is not essential for yeast.  相似文献   

19.
During their biogenesis, 40S ribosomal subunit precursors are exported from the nucleus to the cytoplasm, where final maturation occurs. In this study, we show that the protein kinase human Rio2 (hRio2) is part of a late 40S preribosomal particle in human cells. Using a novel 40S biogenesis and export assay, we analyzed the contribution of hRio2 to late 40S maturation. Although hRio2 is not absolutely required for pre-40S export, deletion of its binding site for the export receptor CRM1 decelerated the kinetics of this process. Moreover, in the absence of hRio2, final cytoplasmic 40S maturation is blocked because the recycling of several trans-acting factors and cytoplasmic 18S-E precursor ribosomal RNA (rRNA [pre-rRNA]) processing are defective. Intriguingly, the physical presence of hRio2 but not its kinase activity is necessary for the release of hEnp1 from cytoplasmic 40S precursors. In contrast, hRio2 kinase activity is essential for the recycling of hDim2, hLtv1, and hNob1 as well as for 18S-E pre-rRNA processing. Thus, hRio2 is involved in late 40S maturation at several distinct steps.  相似文献   

20.
Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis.   总被引:30,自引:9,他引:30       下载免费PDF全文
Subnuclear fractionation and coprecipitation by antibodies against the nucleolar protein NOP1 demonstrate that the essential Saccharomyces cerevisiae RNA snR30 is localized to the nucleolus. By using aminomethyl trimethyl-psoralen, snR30 can be cross-linked in vivo to 35S pre-rRNA. To determine whether snR30 has a role in rRNA processing, a conditional allele was constructed by replacing the authentic SNR30 promoter with the GAL10 promoter. Repression of snR30 synthesis results in a rapid depletion of snR30 and a progressive increase in cell doubling time. rRNA processing is disrupted during the depletion of snR30; mature 18S rRNA and its 20S precursor underaccumulate, and an aberrant 23S pre-rRNA intermediate can be detected. Initial results indicate that this 23S pre-rRNA is the same as the species detected on depletion of the small nucleolar RNA-associated proteins NOP1 and GAR1 and in an snr10 mutant strain. It was found that the 3' end of 23S pre-rRNA is located in the 3' region of ITS1 between cleavage sites A2 and B1 and not, as previously suggested, at the B1 site, snR30 is the fourth small nucleolar RNA shown to play a role in rRNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号