首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-28 elicits antitumor responses against murine fibrosarcoma   总被引:3,自引:0,他引:3  
IL-28 is a recently described antiviral cytokine. In this study, we investigated the biological effects of IL-28 on tumor growth to evaluate its antitumor activity. IL-28 or retroviral transduction of the IL-28 gene into MCA205 cells did not affect in vitro growth, whereas in vivo growth of MCA205IL-28 was markedly suppressed along with survival advantages when compared with that of controls. When the metastatic ability of IL-28-secreting MCA205 cells was compared with that of controls, the expression of IL-28 resulted in a potent inhibition of metastases formation in the lungs. IL-28-mediated suppression of tumor growth was mostly abolished in irradiated mice, indicating that irradiation-sensitive cells, presumably immune cells, are primarily involved in the IL-28-induced suppression of tumor growth. In vivo cell depletion experiments displayed that polymorphonuclear neutrophils, NK cells, and CD8 T cells, but not CD4 T cells, play an equal role in the IL-28-mediated inhibition of in vivo tumor growth. Consistent with these findings, inoculation of MCA205IL-28 into mice evoked enhanced IFN-gamma production and cytotoxic T cell activity in spleen cells. Antitumor action of IL-28 is partially dependent on IFN-gamma and is independent of IL-12, IL-17, and IL-23. IL-28 increased the total number of splenic NK cells in SCID mice and enhanced IL-12-induced IFN-gamma production in vivo and expanded spleen cells in C57BL/6 mice. Moreover, IL-12 augmented IL-28-mediated antitumor activity in the presence or absence of IFN-gamma. These findings indicate that IL-28 has bioactivities that induce innate and adaptive immune responses against tumors.  相似文献   

2.
This study demonstrates that type I IFNs are an early and critical regulator of NK cell numbers, activation, and antitumor activity. Using both IFNAR1- and IFNAR2-deficient mice, as well as an IFNAR1-blocking Ab, we demonstrate that endogenous type I IFN is critical for controlling NK cell-mediated antitumor responses in many experimental tumor models, including protection from methylcholanthrene-induced sarcomas, resistance to the NK cell-sensitive RMA-S tumor and cytokine immunotherapy of lung metastases. Protection from RMA-S afforded by endogenous type I IFN is more potent than that of other effector molecules such as IFN-gamma, IL-12, IL-18, and perforin. Furthermore, cytokine immunotherapy using IL-12, IL-18, or IL-21 was effective in the absence of endogenous type I IFN, however the antimetastatic activity of IL-2 was abrogated in IFNAR-deficient mice, primarily due to a defect in IL-2-induced cytotoxic activity. This study demonstrates that endogenous type I IFN is a central mediator of NK cell antitumor responses.  相似文献   

3.
 There is strong evidence that antitumor activity of interleukin-12 (IL-12) in vivo is mediated, in part, through interferon (IFNγ) produced by IL-12-stimulated natural killer and T cells. Since IFNγ and tumor necrosis factor α (TNFα) have been reported to synergize in antitumor effects in a number of models, we decided to examine whether the combined treatment with recombinant mouse IL-12 and recombinant human TNFα would produce similar effects. The efficacy of the combined IL-12/TNFα immunotherapy was evaluated in three tumor models in mice: B16F10 melanoma, Lewis lung (LL/2) carcinoma and L1 sarcoma. Intratumoral daily injections of 1 μg IL-12 in combination with 5 μg TNFα into B16F10-melanoma-bearing mice resulted in a significant retardation of the tumor growth as compared with that in controls and in mice treated with either cytokine alone. Similar effects were obtained using 0.1 μg IL-12 and 5 μg TNFα in LL/2 carcinoma and L1 sarcoma models. Antitumor activity against L1 sarcoma was still preserved when TNFα at a low dose (1 μg) was combined with 0.1 μg IL-12 and applied for a prolonged time. Potentiation of antitumor effects, which was observed in IL-12/TNFα-based immunotherapy, could result from at least three different mechanisms, partly related to stimulation of IFNγ and TNFα production in treated mice: (a) direct cytostatic/cytotoxic effects on tumor cells, (b) induction of antitumor activity of macrophages, and (c) inhibition of blood vessel formation in the tumor. Our studies demonstrate that combination tumor immunotherapy with IL-12 and TNFα may be more effective than single-cytokine treatment, and suggest possible mechanisms by which IL-12 and TNFα may exert potentiated therapeutic effects against locally growing tumors. Received: 17 February 1997 / Accepted: 5 August 1997  相似文献   

4.
Antitumor and antimetastatic activity of IL-23   总被引:17,自引:0,他引:17  
The structure and T cell stimulatory effects of the recently discovered cytokine IL-23 are similar to, but distinct from, those of IL-12. Although the antitumor activities of IL-12 are well characterized, the effect of IL-23 on tumor growth is not known. In this study, murine CT26 colon adenocarcinoma and B16F1 melanoma cells were engineered using retroviral vectors to release single-chain IL-23 (scIL-23) to evaluate its antitumor activity. In BALB/c mice, scIL-23-transduced CT26 cells grew progressively until day 26 to an average size of 521 +/- 333 mm(3), then the tumors started to regress in most animals, resulting in a final 70% rate of complete tumor rejection. scIL-23 transduction also significantly suppressed lung metastases of CT26 and B16F1 tumor cells. In addition, mice that rejected scIL-23-transduced tumors developed a memory response against subsequent wild-type tumor challenge. Compared with scIL-12-expressing CT26 cells, scIL-23-transduced tumors lacked the early response, but achieved comparable antitumor and antimetastatic activity. These results demonstrated that IL-23, like IL-12, provided effective protection against malignant diseases, but it probably acted by different antitumor mechanisms. As a first step in identifying these antitumor mechanisms, tumor challenge studies were performed in immunocompromised hosts and in animals selectively depleted of various lymphocyte populations. The results showed that CD8(+) T cells, but not CD4(+) T cells or NK cells, were crucial for the antitumor activity of IL-23.  相似文献   

5.
Antiangiogenic and antitumor activities of IL-27   总被引:10,自引:0,他引:10  
IL-27 is a novel IL-6/IL-12 family cytokine playing an important role in the early regulation of Th1 responses. We have recently demonstrated that IL-27 has potent antitumor activity, which is mainly mediated through CD8(+) T cells, against highly immunogenic murine colon carcinoma. In this study, we further evaluated the antitumor and antiangiogenic activities of IL-27, using poorly immunogenic murine melanoma B16F10 tumors, which were engineered to overexpress single-chain IL-27 (B16F10 + IL-27). B16F10 + IL-27 cells exerted antitumor activity against not only s.c. tumor but also experimental pulmonary metastasis. Similar antitumor and antimetastatic activities of IL-27 were also observed in IFN-gamma knockout mice. In NOD-SCID mice, these activities were decreased, but were still fairly well-retained, suggesting that different mechanisms other than the immune response are also involved in the exertion of these activities. Immunohistochemical analyses with Abs against vascular endothelial growth factor and CD31 revealed that B16F10 + IL-27 cells markedly suppressed tumor-induced neovascularization in lung metastases. Moreover, B16F10 + IL-27 cells clearly inhibited angiogenesis by dorsal air sac method, and IL-27 exhibited dose-dependent inhibition of angiogenesis on chick embryo chorioallantoic membrane. IL-27 was revealed to directly act on HUVECs and induce production of the antiangiogenic chemokines, IFN-gamma-inducible protein (IP-10) and monokine induced by IFN-gamma. Finally, augmented mRNA expression of IP-10 and monokine induced by IFN-gamma was detected at the s.c. B16F10 + IL-27 tumor site, and antitumor activity of IL-27 was partially inhibited by the administration of anti-IP-10. These results suggest that IL-27 possesses potent antiangiogenic activity, which plays an important role in its antitumor and antimetastatic activities.  相似文献   

6.
NK dendritic cells (NKDC) are a novel subtype of DC with NK cell properties. IL-15 is a pleiotropic cytokine that plays an obligate role in the proliferation and survival of NK cells. We hypothesized that IL-15 is also essential for NKDC development. NKDC were nearly absent in IL-15(-/-) mice, but restored by administration of exogenous IL-15. Treatment of wild-type mice with IL-15 caused a 2- to 3-fold expansion of both NK cells and NKDC. After 7 days of culture with IL-15, sorted splenic NKDC expanded 10-fold while NK cells increased 5-fold. NKDC expanded in IL-15 retained their cytolytic capacity but lost the ability to stimulate naive T cells. Meanwhile, NKDC expanded in IL-15 produced 10 times more IFN-gamma as fresh NKDC and conferred protection in a tumor prevention model. Thus, IL-15 is essential to the proliferation and survival of NKDC and IL-15 expanded NKDC possess antitumor properties.  相似文献   

7.
In order to search for a new therapy that would maximize the effect of interleukin-2 (IL-2) in evoking antitumor immunity in vivo, the therapeutic effect of a combination of mitomycin-C(MMC)-treated tumor cells and recombinant IL-2 was examined for its induction of antitumor activity against established melanoma metastasis. In C57BL/6 mice intravenously (i. v.) injected with B16 melanoma cells on day 0, the combined treatment with an intraperitoneal (i. p.) injection of MMC-treated melanoma cells on day 6 and 2500 U rIL-2 (twice daily) on days 7 and 8 markedly reduced the number of pulmonary metastases. This antitumor activity was more effective than that in untreated controls and mice that were injected with MMC-treated melanoma cells alone or rIL-2 alone. When the i. p. injection of MMC-treated tumor cells was replaced by other syngeneic tumor cells, antitumor activity against metastatic melanoma was not induced. The antitumor activity induced by this treatment increased in parallel with an increase in the dose of rIL-2 injected. In contrast, an i. p. injection of soluble tumor-specific antigens alone could induce only a marginal level of antitumor activity, and this activity was not augmented by subsequent i. p. injections of rIL-2. In vivo treatment with anti-CD8 monoclonal antibody (mAb), but not with anti-CD4 mAb or anti-asialo-GM1 antibody, abrogated the antitumor activity induced by this combined therapy. This suggests that the antitumor effect was dependent on CD8+ T cells. Lung-infiltrating lymphocytes from mice that had been i. v. injected with melanoma cells 11 days before and were treated with this combined therapy, showed melanoma-specific cytolytic activity. This combined therapy also showed significant antitumor activity against subcutaneously inoculated melanoma cells. These results demonstrate that the combined therapy of an i. p. injection of MMC-treated tumor cells and subsequent and consecutive i. p. administration of rIL-2 increases antitumor activity against established metastatic melanoma by generating tumor-specific CD8+ CTL in vivo.  相似文献   

8.
Virulizin, a novel biological response modifier, has demonstrated significant antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. The significant role of macrophages and NK (Natural killer) cells was implicated in the antitumor mechanism of Virulizin where expansion as well as increased activity of macrophages and NK cells were observed in mice treated with Virulizin. Depletion of macrophages compromised Virulizin-induced NK1.1+ cell infiltration into xenografted tumors and was accompanied by reduced antitumor efficacy. In the present study, involvement of macrophages in NK cell activation was investigated further. We found that depletion of NK cells in CD-1 nude mice by anti-ASGM1 antibody significantly compromised the antitumor activity of Virulizin. Cytotoxicity of NK cells isolated from Virulizin-treated mice was enhanced against NK-sensitive YAC-1 cells and C8161 human melanoma cells, but not against NK-insensitive P815 cells. An increased level of IL-12 was observed in the serum of mice treated with Virulizin. IL-12 mRNA and protein levels were also increased in peritoneal macrophages isolated from Virulizin-treated mice. Moreover, Virulizin-induced cytotoxic activity of NK cells isolated from the spleen was abolished when an IL-12 neutralizing antibody was co-administered. In addition, depletion of macrophages in mice significantly impaired Virulizin-induced NK cell cytotoxicty. Taken together, the results suggest that Virulizin induces macrophage IL-12 production, which in turn stimulates NK cell-mediated antitumor activity.  相似文献   

9.
Virulizin has demonstrated strong antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. Our previous studies have demonstrated that macrophages, NK cells, and cytokines are important in the antitumor mechanism of Virulizin. Virulizin treatment of tumor bearing mice results in the expansion as well as increased activity of monocytes/macrophages and production of cytokines IL-12 and TNFalpha and activation of NK cells. In this study we show that the inflammatory cytokine IL-17E (IL-25) is induced by Virulizin treatment and is part of its antitumor mechanism. IL-17E is a proinflammatory cytokine, which induces a T(H)2 type immune response, associated with eosinophil expansion and infiltration into mucosal tissues. IL-17E was increased in sera of Virulizin-treated mice bearing human melanoma xenografts, compared to saline-treated controls, as shown by 2D gel electrophoresis and ELISA. Treatment of splenocytes in vitro with Virulizin resulted in increased IL-17E mRNA expression, which peaked between 24 and 32 h post-stimulation. Both in vitro and in vivo experiments demonstrated that B cells produced IL-17E in response to Virulizin treatment. Furthermore, Virulizin treatment in vivo resulted in increased blood eosinophilia and eosinophil infiltration into tumors. Finally, injection of recombinant IL-17E showed antitumor activity towards xenografted tumors, which correlated with increased eosinophilia in blood and tumors. Taken together, these results support another antitumor mechanism mediated by Virulizin, through induction of IL-17E by B cells, leading to recruitment of eosinophils into tumors, which may function in parallel with macrophages and NK cells in mediating tumor destruction.  相似文献   

10.
Distinct requirements for IFNs and STAT1 in NK cell function   总被引:9,自引:0,他引:9  
NK cell functions were examined in mice with a targeted mutation of the STAT1 gene, an essential mediator of IFN signaling. Mice deficient in STAT1 displayed impaired basal NK cytolytic activity in vitro and were unable to reject transplanted tumors in vivo, despite the presence of normal numbers of NK cells. IL-12 enhanced NK-mediated cytolysis, but poly(I:C) did not, and a similar phenotype occurred in mice lacking IFNalpha receptors. Molecules involved in activation and lytic function of NK cells (granzyme A, granzyme B, perforin, DAP10, and DAP12) were expressed at comparable levels in both wild-type and STAT1(-/-) mice, and serine esterase activity necessary for CTL function was normal, showing that the lytic machinery was intact. NK cells with normal cytolytic activity could be derived from STAT1(-/-) bone marrow progenitors in response to IL-15 in vitro, and enhanced NK lytic activity and normal levels of IFN-gamma were produced in response to IL-12 treatment in vivo. Despite these normal responses to cytokines, STAT1(-/-) mice could not reject the NK-sensitive tumor RMA-S, even following IL-12 treatment in vivo. Whereas in vitro NK cytolysis was also reduced in mice lacking both type I and type II IFN receptors, these mice resisted tumor challenge. These results demonstrate that both IFN-alpha and IFN-gamma are required to maintain NK cell function and define a STAT1-dependent but partially IFN-independent pathway required for NK-mediated antitumor activity.  相似文献   

11.
We assessed the effect of the stimulatory anti-CD40 Ab on NK cell activation in vivo and the therapeutic potential of activated NK cells in tumor-bearing mice. Single-dose i.p. injection of the anti-CD40 Ab resulted in production of IL-12 and IFN-gamma in vivo, followed by a dramatic increase in NK cell cytolytic activity in PBLs. NK cell activation by anti-CD40 Ab was also observed in CD40 ligand knockout mice. Because NK cells express CD40 ligand but not CD40, our results suggest that NK activation is mediated by increased cytokine production upon CD40 ligation of APCs. Treatment of tumor-bearing mice with anti-CD40 Ab resulted in substantial antitumor and antimetastatic effects in three tumor models. Depletion of NK cells with anti-asialo GM1 Ab reduced or abrogated the observed antitumor effects in all the tested models. These results indicate that a stimulatory CD40 Ab indirectly activates NK cells, which can produce significant antitumor and antimetastatic effects.  相似文献   

12.
In the present study we demonstrate the ability of allogeneic M3 tumor cells to induce an antitumor response against the syngeneic tumor, when injected locally together with syngeneic B16 melanoma cells. The replacement of the allogeneic tumor cells with either syngeneic or allogeneic splenocytes had no effect on the growth of the syngeneic tumor. Systemic administration of both interleukin-2 (IL-2) and IL-6 did not affect the antitumor response induced by allogeneic tumor cells. When mice, previously injected with B16 and M3 cells, were rechallenged subcutaneously with B16 tumor cells at a different anatomical site, an inhibitory effect in some, but not all, experiments was observed. Systemic injections of either IL-2 or IL-6 did not alter the antitumor effects of the allogeneic and syngeneic tumor-cell mixtures. The significance of our results in developing immunotherapy modalities based on active immunization with allogeneic tumor cells and selected cytokines is discussed.This study was supported by a grant from the Israeli Cancer Association  相似文献   

13.
Systemic administration of rIL-18 protein to mice significantly suppresses the growth of murine tumor cell lines. The antitumor effect of IL-18 appears to be primarily mediated by asialo GM1+ cells. Since IL-18 enhances Fas ligand (FasL) expression on NK cell lines, the IL-18 antitumor effects could be mediated by FasL-induced cross-linking of Fas and subsequent tumor apoptosis. To address this question, rIL-18 or rIL-12 was administered to animals bearing the CL8-1 melanoma inoculated intradermally into wild type (wt), lymphoproliferation gene (lpr) (Fas deficient), or generalized lymphoproliferative disease gene (gld) (FasL deficient) mice. Although rIL-12 treatment retained significant antitumor effects in gld and lpr mice, those of rIL-18 administration were completely abrogated in gld but not lpr or wt mice. In vitro cytotoxicity was significantly enhanced against NK-sensitive YAC-1 cells and CL8-1 cells by rIL-18 administration to wt mice, but not to gld mice. Furthermore, rIL-18 administration augmented the cytotoxicity of liver lymphocytes harvested from perforin-deficient mice, whereas rIL-12 administration did not. Consistent with the role of this pathway, rIL-18 administration also up-regulates the expression of FasL mRNA in splenocytes. Lysis of CL8-1 cells induced by anti-Fas agonistic Ab was enhanced about 1.4-fold by IFN-gamma, a cytokine that is induced by IL-18 in vitro and in vivo. We conclude that the antitumor effect of IL-18 is exerted predominantly through a Fas-dependent pathway. The perforin pathway, however, appears to be the predominant cytolytic pathway mediating IL-12 antitumor effects.  相似文献   

14.
CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer   总被引:12,自引:0,他引:12  
CD4+CD25+ regulatory T cells (Treg) that suppress T cell-mediated immune responses may also regulate other arms of an effective immune response. In particular, in this study we show that Treg directly inhibit NKG2D-mediated NK cell cytotoxicity in vitro and in vivo, effectively suppressing NK cell-mediated tumor rejection. In vitro, Treg were shown to inhibit NKG2D-mediated cytolysis largely by a TGF-beta-dependent mechanism and independently of IL-10. Adoptively transferred Treg suppressed NK cell antimetastatic function in RAG-1-deficient mice. Depletion of Treg before NK cell activation via NKG2D and the activating IL-12 cytokine, dramatically enhanced NK cell-mediated suppression of tumor growth and metastases. Our data illustrate at least one mechanism by which Treg can suppress NK cell antitumor activity and highlight the effectiveness of combining Treg inhibition with subsequent NK cell activation to promote strong innate antitumor immunity.  相似文献   

15.
We have shown previously that IFN-gamma-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo. TBJ neuroblastoma cells engineered to overexpress IL-27 demonstrated markedly delayed growth compared with control mice, and complete durable tumor regression was observed in >90% of mice bearing either s.c. or orthotopic intra-adrenal tumors, and 40% of mice bearing induced metastatic disease. The majority of mice cured of their original TBJ-IL-27 tumors were resistant to tumor rechallenge. Furthermore, TBJ-IL-27 tumors were heavily infiltrated by CD8(+) T cells, and draining lymph node-derived lymphocytes from mice bearing s.c. TBJ-IL-27 tumors are primed to proliferate more readily when cultured ex vivo with anti-CD3/anti-CD28 compared with lymphocytes from mice bearing control tumors, and to secrete higher levels of IFN-gamma. In addition, marked enhancement of local IFN-gamma gene expression and potent up-regulation of cell surface MHC class I expression are noted within TBJ-IL-27 tumors compared with control tumors. Functionally, these alterations occur in conjunction with the generation of tumor-specific CTL reactivity in mice bearing TBJ-IL-27 tumors, and the induction of tumor regression via mechanisms that are critically dependent on CD8(+), but not CD4(+) T cells or NK cells. Collectively, these studies suggest that IL-27 could be used therapeutically to potentiate the host antitumor immune response in patients with malignancy.  相似文献   

16.
Interleukin-12 (IL-12) is a heterodimeric cytokine with potent immunostimulatory activity and anti-angiogenic properties. Its clinical applications are limited, however, by severe side-effects. Here we report that an IL-12 fusion protein, consisting of IL-12 fused to a human antibody fragment specific to the oncofetal ED-B domain of fibronectin, markedly enhances the antitumor activity of this cytokine, as demonstrated in a mouse lung-metastasis model and in two models of mice bearing different aggressive murine tumors. The residual small tumor masses seen in the treated mice were infiltrated with lymphocytes, macrophages, and natural killer cells and had elevated interferon gamma (IFN-gamma). These results are of therapeutic relevance as the ED-B domain of fibronectin, a naturally occurring marker of angiogenesis identical in mouse and man, is expressed in the majority of aggressive solid tumors but is not detectable in normal vessels and tissues.  相似文献   

17.
NK cell populations were derived from murine splenocytes stimulated by IL-2, IL-15, or the combination of IL-12 and IL-18. Whereas NK cells derived with the latter cytokines consisted of an homogeneous population of NK cells (DX5+CD3-), those derived with IL-2 or IL-15 belonged to two different populations, namely NK cells (DX5+CD3-) and T-NK cells (DX5+CD3+). Among NK cells, only those derived with IL-12/IL-18 produced detectable levels of cytokines, namely IFN-gamma, IL-10, and IL-13 (with the exception of IL-13 production by NK cells derived with IL-2). As for T-NK cells, IL-2-stimulated cells produced a wide range of cytokines, including IL-4, IL-5, IL-9, IL-10, and IL-13, but no IFN-gamma, whereas IL-15-derived T-NK cells failed to produce any cytokine. Switch-culture experiments indicated that T-NK cells derived in IL-2 and further stimulated with IL-12/IL-18 produced IFN-gamma and higher IL-13 levels. Next, we observed that NK/T-NK cell populations exerted distinct effects on Ig production by autologous splenocytes according to the cytokines with which they were derived. Thus, addition of NK cells derived in IL-12/IL-18 inhibited Ig production and induced strong cytotoxicity against splenocytes, whereas addition of NK or T-NK cells grown in IL-2 or IL-15 did not. Experiments performed in IFN-gammaR knockout mice demonstrated that IFN-gamma was not involved in the killer activity of IL-12/IL-18-derived NK cells. The hypothesis that their cytotoxic activity was related to the induction of target apoptosis was confirmed on murine A20 lymphoma cells. Experiments performed in MRL/lpr mice indicated that IL-12/IL-18-derived NK cells displayed their distinct killer activity through a Fas-independent pathway. Finally, perforin was much more expressed in IL-12/IL-18-derived NK cells as compared with IL-2- or IL-15-derived NK cells, an observation that might explain their unique cytotoxicity.  相似文献   

18.
19.
In the present study, we have tested the ability of hydrodynamically delivered IL-2 cDNA to modulate the number and function of murine leukocyte subsets in different organs and in mice of different genetic backgrounds, and we have evaluated effects of this mode of gene delivery on established murine tumor metastases. Hydrodynamic administration of the IL-2 gene resulted in the rapid and transient production of up to 160 ng/ml IL-2 in the serum. The appearance of IL-2 was followed by transient production of IFN-gamma and a dramatic and sustained increase in NK cell numbers and NK-mediated cytolytic activity in liver and spleen leukocytes. In addition, significant increases in other lymphocyte subpopulations (e.g., NKT, T, and B cells) that are known to be responsive to IL-2 were observed following IL-2 cDNA plasmid delivery. Finally, hydrodynamic delivery of only 4 mug of the IL-2 plasmid to mice bearing established lung and liver metastases was as effective in inhibiting progression of metastases as was the administration of large amounts (100,000 IU/twice daily) of IL-2 protein. Studies performed in mice bearing metastatic renal cell tumors demonstrated that the IL-2 cDNA plasmid was an effective treatment against liver metastasis and moderately effective against lung metastasis. Collectively, these results demonstrate that hydrodynamic delivery of relatively small amounts of IL-2 cDNA provides a simple and inexpensive method to increase the numbers of NK and NKT cells, to induce the biological effects of IL-2 in vivo for use in combination with other biological agents, and for studies of its antitumor activity.  相似文献   

20.
IL-21 is a key factor in the transition between innate and adaptive immune responses. We have used the cytokine gene therapy approach to study the antitumor responses mediated by IL-21 in the B16F1 melanoma and MethA fibrosarcoma tumor models in mice. Retrovirally transduced tumor cells secreting biologically functional IL-21 have growth patterns in vitro similar to that of control green fluorescent protein-transduced cells, but are completely rejected in vivo. We show that IL-21 activates NK and CD8(+) T cells in vivo, thus mediating complete rejection of poorly immunogenic tumors. Rejection of IL-21-secreting tumors requires the presence of cognate IL-21R and does not depend on CD4(+) T cell help. Interestingly, perforin, but not IFN-gamma or other major Th1 and Th2 cytokines (IL-12, IL-4, or IL-10), is required for the IL-21-mediated antitumor response. Moreover, IL-21 results in 50% protection and 70% cure of nonimmunogenic tumors when given before and after tumor challenge, respectively, in C57BL/6 mice. We conclude that IL-21 immunotherapy warrants clinical evaluation as a potential treatment for cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号