首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH. Rice seedlings were grown either with NH4+ or NO3-. For both nitrogen forms, the pH value of nutrient solutions was gradually adjusted to pH 6.5 or 3.0. After 4 d cultivation, hydrolytic H+-ATPase activity, V max, K m, H+-pumping activity, H+ permeability and pH gradient across the plasma membrane were significantly higher in rice roots grown at pH 3.0 than at 6.5, irrespective of the nitrogen forms supplied. The higher activity of plasma membrane H+-ATPase of adapted rice roots was attributed to the increase in expression of OSA1, OSA3, OSA7, OSA8 and OSA9 genes, which resulted in an increase of H+-ATPase protein concentration. In conclusion, a high regulation of various plasma membrane H+-ATPase genes is responsible for the adaptation of rice roots to low pH. This mechanism may be partly responsible for the preference of rice plants to NH4+ nutrition.  相似文献   

2.
Changes in tonoplast H+-ATPase (EC 3.6.1.3) and H+–PPase (EC 3.6.1.1) activities were examined during the early period of callus formation in tuber tissues of Jerusalem artichoke ( Helianthus tuberosus L.). In callus-forming tissues cultured on a medium containing 2,4-D, the ATP-dependent H+-translocation activity of tonoplast vesicles increased 3-fold after a 2-day lag phase, while the ATP-hydrolytic activity and amount of tonoplast H+-ATPase protein were relatively constant after the lag phase. In the control tissue disks cultured on a medium free of 2,4-D, large declines in ATP-hydrolytic and ATP-dependent H+-translocation activities were observed. By contrast, the PP-dependent H+-translocation activity of tonoplast vesicles increased about 8-fold during the first 3 days of culture without any lag phase, and regardless of the presence of 2,4-D in the culture medium. However, the PP-hydrolytic activity and amount of H+-PPase protein did not change during the culture period, independently of callus formation. Transfer of the control tissue disks to the 2,4-D-containing medium, however, resulted in a further rapid stimulation of PP-dependent H+-translocation as well as an activation of ATP-dependent H+-translocation. These results suggest that both tonoplast H+ pumps are involved in callus formation of tuber tissues of Jerusalem artichoke.  相似文献   

3.
The Mg2+-dependent activity of the tonoplast pyrophosphatase (PPase) was investigated by measuring proton transport and by using the acridine orange technique on intact vacuoles of the aquatic liverwort Riccia fluitans L. In solutions with both Mg2+ and pyrophosphate present, a number of complexes are formed, which could all influence the enzymatic and hence the transport activity of the PPase. Therefore, the individual concentrations of these complexes were calculated and their contributions to proton transport across the tonoplast were tested. From these experiments we conclude that Mg2+ has three different roles: (i) Mg2+ stimulates transport activity of the PPase. (ii) Mg2PPi inhibits PPase-mediated H+ transport, (iii) MgPPi* (= MgPPi2-+ MgHPPi-) is the substrate with an apparent K1/2= 5–10 μM, with no discrimination between MgPPi2- and MgHPPi-.  相似文献   

4.
Cleared maize ( Zea mays L. cv. LG 11) root homogenates were prepared and layered on the top of sucrose step gradients (10, 35 and 45%). The ATP- and pyrophosphate (PPi)-dependent proton-pumping activities were recovered almost completely at the 10%/35% interface, corresponding to the microsomal fraction (Golgi, tonoplast and endoplasmic reticulum). The PPi-dependent proton pump was characterized by the fluorescence quenching of quenching of quinacrine. The pH optimum was 7 to 8. The H+-PPase was Mg2+-dependent and the Km for PPi (in the presence of 3 m M MgSO4) was 28 μ M . The pump was electrogenic, K+-dependent and a permeant anion was necessary to dissipate the membrane potential (NO3= I >Br > Cl). No activity was detected in the presence of electroneutral proton inonophores or, when valinomycin was added, with electrogenic ionophores. The H+-PPase was insensitive to vanadate, oligomycin and molybdate. -Diethylstilbestrol (DES) and N,N'-dicyclohexylcarbodiimide (DCCD) were strongly inhibitory at 100 μ M .  相似文献   

5.
NaCl-induced changes in the accumulation of message for the 70 kDa subunit of the tonoplast H+-ATPase and plasma membrane H+-ATPase were studied in hydroponically grown plants of Lycopersicon esculentum Mill. cv. Large Cherry Red. There was increased accumulation of message for the 70 kDa (catalytic) subunit of the tonoplast H+-ATPase in expanded leaves of tomato plants 24 h after final NaCl concentrations were attained. This was a tissue-specific response; levels of this message were not elevated in roots or in young, unexpanded leaves. The NaCl-induced accumulation of this message was transient in the expanded leaves and returned to control levels within 7 days. The temporal and spatial patterns of NaCl-induced accumulation of message for the plasma membrane H+-ATPase differed from the patterns associated with the 70 kDa subunit of the tonoplast H+-ATPase. NaCl-induced accumulation of the plasma membrane H+-ATPase message occurred in both roots and expanded leaves. Initially accumulation of the plasma membrane H+-ATPase message was greater in root tissue than in expanded leaves, but increased to higher levels in expanded leaves after 7 days. These results suggest that increased expression of the tonoplast H+-ATPase is an early response to salinity stress and may be associated with survival mechanisms, rather than with long-term adaptive processes.  相似文献   

6.
The control of ion concentration in the cytosol and the accumulation of ions in vacuoles are thought to be key factors in salt tolerance. These processes depend on the establishment in vacuolar membranes of an electrochemical H+ gradient generated by two distinct H+-translocating enzymes: a H+-PPase and a H+-ATPase. H+-lrans locating activities were characterized in tonoplast-enriched membrane fractions isolated by sucrose gradient centrifugation from sunflower ( Helianthus annuus L.) roots exposed for 3 days to different NaCl regimes. The 15/32% sucrose interface was enriched in membrane vesicles possessing a vacuolar-type H+-ATPase and a H+-PPase, as indicated by inhibitor sensitivity, pH optimum, substrate specificity, ion effects kinetic data and immunolabelling with specific antibodies. Mild and severe stress did not alter the pH profile, ion dependence, apparent Km nor the amount of antigenic protein of either enzyme. Saline treatments slightly increased K+-stimulaied PPase activity with no change in ATPase activity, while both PPi-dependent and NO3-sensitive ATP-dependent H+ transport activities were strongly stimulated. These results are discussed in terms of an adaptative mechanism of the moderately tolerant sunflower plants to salt stress.  相似文献   

7.
Plasma membrane vesicles were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots in an aqueous polymer two-phase system. The plasma membranes possessed high specific ATPase activity [ca 4 μmol P1 (mg protein)−1 min−1 at 37°C]. Addition of lysophosphatidylcholine (lyso-PC) produced a 2–3 fold activation of the plasma membrane ATPase, an effect due both to exposure of latent ATP binding sites and to a true activation of the enzyme. Lipid activation increased the affinity for ATP and caused a shift of the pH optimum of the H+ -ATPase activity to 6.75 as compared to pH 6.45 for the negative H+-ATPase. Activation was dependent on the chain length of the acyl group of the lyso-PC, with maximal activition obtained by palmitoyl lyso-PC. Free fatty acids also activated the membrane-bound H+-ATPase. This activation was also dependent on chain length and to the degree of unsaturation, with linolenic and arachidonic acid as the most efficient fatty acids. Exogenously added PC was hydrolyzed to lyso-PC and free fatty acids by an enzyme in the plasma membrane preparation, presumably of the phospholipase A type. Both lyso-PC and free fatty acids are products of phospholipase A2 (EC 3.1.1.4) action, and addition of phospholipase A2 from animal sources increased the H+-ATPase activity within seconds. Interaction with lipids and fatty acids could thus be part of the regulatory system for H+-ATPase activity in vivo, and the endogenous phospholipase may be involved in the regulation of the H+-ATPase activity in the plasma membranne.  相似文献   

8.
The effect of boron excess and deficiency on H+ efflux from excised roots from sunflower ( Heliarahus annuus L. cv. Enano) seedlings and on plasma membrane H+-ATPase (EC 3.6.1.35) in isolated KI-washed microsomes has been investigated. When seedlings were grown in media with toxic levels of H3BO3 (5 m M ) or without added boron and exposed to light conditions, an inhibition of the capacity for external acidification by excised roots was observed as compared to roots from seedlings grown with optimal H3BO3 concentration (0.25 m M ). Toxic and deficient boron conditions also inhibited the vanadate-sensitive H+-ATPase of microsomes isolated from the roots. The mechanism of boron toxicity was investigated in vitro with microsorne vesicles. A strong effect of boron on the vanadate-sensitive, ATP-dependent H+ transport was found, but the vanadate-sensitive phospho-bydrolase activity was not affected. These results suggest that boron could exert an effect on the plasma membrane properties, directly or indirectly regulating, proton transport.  相似文献   

9.
Two Na^+ and Cl^- Hyperaccumulators of the Chenopodiaceae   总被引:1,自引:0,他引:1  
The authors found five sodium (Na^ ) and chloride (Cl^-) hyperaccumulating halophytes in the Temperate Desert of Xinjiang, China and studied two of them (Suaeda salsa (L.) Pall. and Kalidium folium (Pall.) Moq.). K. folium and S. salsa had a NaCl content of 32.1% and 29.8%, respectively, on a dry weight basis. X-ray microanalysis of the Na in the vacuole, apoplasts and cytoplasm of the two plants indicated a ratio of 7.3:5.6:1.0 in K. folium and 7.3:6.6:1.0 in S. salsa. These data show that K. folium and S. salsa both have a high Na and Cl^- accumulating capacity, which is related to high activity of tonoplast H^ -ATPase and H^ -PPase.  相似文献   

10.
The regulation of the H+-ATPase of plasma membrane is a crucial point in the integration of transport processes at this membrane. In this work the regulation of H+-ATPase activity induced by changes in turgor pressure was investigated and compared with the stimulating effect of fusicoccin (FC). The exposure of cultured cells of Arabidopsis thaliana L. (ecotype Landsberg 310–14-2) to media containing mannitol (0. 15 or 0. 3 M ) or polyethylene glycol 6000 (PEG) (15. 6% or 22% w/v) resulted in a decrease in the turgor pressure of the cells and in a strong stimulation of H+ extrusion in the incubation medium. The osmotica-induced H+ extrusion was (1) inhibited by the inhibitor of plasma membrane H+-ATPase, erythrosin B (EB), (2) dependent on the external K+ concentration, (3) associated with a net K+ influx, and (4) lead to an increase of cellular malate content. These results show that the reduction of external osmotic potential stimulates the activity of plasma membrane H+-ATPase
The effect of mannitol was only partially inhibited by treatments with cycloheximide (CH) and cordycepin, which block protein and mRNA synthesis, respectively. All the effects of osmotica were qualitatively and quantitatively similar to those induced by 5 μ M FC. However, when FC and mannitol (or PEG) were fed together, their effects on H+ extrusion appeared synergistic, irrespective of whether FC was present at suboptimal or optimal concentrations. This behaviour suggests that the modes of action of FC and of the osmotica on H+-ATPase activity differ at least in some step(s)  相似文献   

11.
The proton pumping activity of the tonoplast (vacuolar membrane) H+-ATPase and H+-pyrophosphatase (H+-PPase) has been studied on a tonoplast-enriched microsomal fraction and on intact vacuoles isolated from a heterotrophic cell suspension culture of Chenopodium rubrum L. in the presence of the lysosphingolipids D-sphingosine, psychosine (galactosylsphingosine) and lysosulfatide (sulfogalactosyl-sphingosine). Sphingosine strongly stimulates (Ka= 0.16 μ M ) the PPase activity, assayed both as ΔpH formation across the tonoplast vesicle membrane, and as reversible clamp current measured by the whole-vacuolar mode of the patch-clamp technique. Psychosine showed a minor, and lysosulfatide no stimulatory effect. No effect upon the ATPase activity has been observed. No sphingosine-induced change could be observed in the affinity of the PPase for its substrate (apparent Km= 10 μ M MgPPi). We tentatively conclude that sphingosine, which is known as a potent inhibitor of the protein kinase C in animal cells, may be a regulator of the plant vacuolar PPase.  相似文献   

12.
Abstract Washed cells of Rhodopseudomonas sphaeroides forma sp. denitrificans , grown under photodenitrifying conditions, exhibited K+ uptake dependent on the transmembrane proton gradient (Δ pH). These cells also acidified the suspension medium in response to K+ pulses both aerobically and anaerobically in light and in the dark. The results indicate that the photodenitrifier has a reversible K+/H+ exchange activity which reflects its role in regulating the intracellular K+ concentration, as well as intracellular pH. The acidification of the external medium resulting from K+ pulses was inhibited by carbonyl cyanide- m -chlorophenylhydrazone (CCCP) indicating that the antiporter is energy-dependent. Addition of KCl to washed cells depolarized the membrane potential (Δψ) with a concomitant increase in ΔpH, indicating that the K+/H+ antiporter was electrogenic.  相似文献   

13.
Abstract. Rates of proton extrusion and potassium (86Rb) influx by intact roots of barley ( Hordeum vulgare cvs . Fergus, Conquest and Betzes) plants were simultaneously measured in short-term (15min) experiments. The nature and extent of apparent coupling between these ion fluxes was explored by manipulating conditions of temperature, pH and cation composition and concentration during flux determinations. In addition, the influence of salt status upon these fluxes was examined. At low K+ concentrations (0.01 to 1 mol m−3), H+ efflux and K+ influx were strongly correlated in both low- and high-K+ roots, although K+: H+ exchange stoichiometries were almost consistently greater than 2:1. At higher concentrations (1 to 5 mol m−3), H+ efflux was either reduced or remained unchanged while K+ influxes increased. In the presence of Na2SO4, rates of H+ extrusion demonstrated similar cation dependence, although below 10 mol m−3 Na2SO4, H+ fluxes were generally 50% lower than in equivalent concentrations of K2SO4. These observations are considered in the context of current hypotheses regarding the mechanisms of k+/H+ exchange.  相似文献   

14.
Plasma membranes from the green alga Chlamydomonas reinhardtii were purified by differential centrifugation and two-phase partitioning in an aqueous polymer system. The isolated plasma membranes were virtually free from contaminating chloroplasts, mitochondria, endoplasmic reticulum and Golgi membranes as shown by marker enzyme and pigment analysis. The isolated plasma membranes exhibited vanadate sensitive ATPase activity, indicating the presence of a P-type ATPase. This was verified by using antibodies against P-type ATPase from Arabidopsis , which crossreacted with a protein of 109 kDa. The ATPase activity was inhibited to more than 90% by vanadate (Ki= 0.9 μ M ) but not affected by inhibitors specific for F- or V-type ATPases. demonstrating the purity of the plasma membranes. Mg-ATP was the substrate, and the rate of ATP-hydrolysis followed simple Michaelis-Menten kinetics giving a Km= 0.46 m M . Free Mg2+ stimulated the activity, K1/2= 0.68 m M . Maximal activity was obtained at pH 8. The ATPase activity was latent but stimulated 10 to 20-fold in the presence of detergents. This indicates that the isolated plasma membrane vesicles were tightly sealed and mostly right-side-out, making the ATPase inaccessible to the hydrophilic substrate ATP. In the presence of the Brij 58, the isolated plasma membranes performed ATP dependent H+-pumping as shown by the optical pH probe acridine orange. H+-pumping was dependent on the presence of valinomycin and K+ ions and completely abolished by vanadate. Addition of Brij 58 has been shown to produce 100% sealed inside-out vesicles of plant plasma membranes (Johansson et al. 1995, Plant J. 7: 165–173) and this was also the case for plasma membranes from the green alga Chlamydomonas reinhardtii.  相似文献   

15.
Light-triggered membrane potential changes in cells of a liverwort Anthoceros are greatly enhanced by the ionophorous uncouplers nigericin and monesin. Stimulation of the light-triggered electrical response (LTER) by nigericin occurred concomitantly with inhibition of a slow decline in the chlorophyll fluorescence, which suggests that the transmembrane pH gradient in thylakoids is not essential for generation of LTER at the plasma membrane. The extent of monensin-stimulated LTER remained high under a diminished driving force for the ionophore-induced proton-cation exchange across the plasma membrane (elevation of the external Na+ concentration from 1 to 50 m M ), which indicates that energy uncoupling in chloroplasts is more related to the electric response enhancement than the induction of the H+/K+(Na+) exchange at the plasma membrane. Enhancement of LTER by ionophores occurs in parallel with stimulation of light-triggered pH changes (alkalinization) in the vicinity of the cell surface, which suggests an association of trans-membrane H+ fluxes with LTER. The results are consistent with the hypothesis that illumination produces a temporary inhibition of the plasma membrane H+ pump with a subsequent activation of gated channels and transient rapid depolarization of the cell.  相似文献   

16.
The H+/PPi stoichiometry of the mitochondrial H+‐PPiase from pea ( Pisum sativum L.) stem was determined by two kinetic approaches, and compared with the H+/substrate stoichiometries of the mitochondrial H+‐ATPase, and the vacuolar H+‐PPiase and H+‐ATPase. Using sub‐mitochondrial particles or preparations enriched in vacuolar membranes, the rates of substrate‐dependent H+‐transport were evaluated: by a mathematical model, describing the time‐course of H+‐gradient (ΔpH) formation; or by determining the rate of H+‐leakage following H+‐pumping inhibition by EDTA at the steady‐state ΔpH. When the H+‐transport rates were divided by those of PPi or ATP hydrolysis, measured under identical conditions, apparent stoichiometries of ca 2 were determined for the mitochondrial H+‐PPiase and H+‐ATPase, and for the vacuolar H+‐ATPase. The stoichiometry of the vacuolar H+‐PPiase was found to be ca 1. From these results, it is suggested that the mitochondrial H+‐PPiase may, in theory, function as a primary H+‐pump poised towards synthesis of PPi and, therefore, acting in parallel with the main H+‐ATPase.  相似文献   

17.
Effects of pH on proton transport by vacuolar pumps from maize roots   总被引:1,自引:0,他引:1  
Protons pumps of the tonoplast may be involved in the regulation of cytosolic pH, but the effects of pH on the coupled activities of these transporters are poorly understood. The effects of pH on the activities of the H+-translocating pyrophosphatase (PPiase) and vacuolar-type H+-translocating adenosine triphosphatase (H+-ATPase) from maize ( Zea mays L. cv. FRB 73) root membranes were assessed by model that simultaneously considers proton transport by the pump and those processes that reduce net transport. The addition of either pyrophosphate or ATP to either microsomal or tonoplast membranes generated a pH gradient. The pH gradient generated in the presence of both substrates was not the sum of the gradients produced by the two substrates added separately. When membranes were separated by sucrose density gradient centrifugation, pyrophosphate (PPi)-dependent proton transport was associated with light density membranes having tonoplast H+-ATPase activity. These results indicate that some portion of the PPiase was located on the same membrane system as the tonoplast ATPase; however, tonoplast vesicles may be heterogeneous, differing slightly in the ratio of ATP- to PPi-dependent transport. Proton transport by both the PPiase and ATPase had maximal activity at pH 7.0 to 8.0 Decreases in proton transport by the ATPase at pH above the optimum were associated with increases in the processes that reduce net transport. Such an association was not observed at pH values below the optimum. These results are discussed in terms of in situ regulation of cytoplasmic pH by the two pumps.  相似文献   

18.
Plasma membrane vesicles with H+-ATPase activity were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots using an aqueous polymer two-phase system. Of several detergents tested, only lysophosphatidylcholine solubilized the H+-ATPase in an active form. Solubilization of the H+-ATPase with lysophosphatidylcholine was possible in the absence of glycerol, but the ATPase activity decreased about 4–5 times as rapidly in the absence as in the presence of 30% (w/v) glycerol. The solubilized enzyme was further stabilized by ATP and protons. Addition of 1 m M ATP to the plasma membranes halted inactivation of the H+-ATPase. Even in the absence of polyol compounds and ATP, the enzyme was stable for hours at relatively low pH with an optimum around pH 6.7 at room temperature. The curve for the stability of soluble H+-ATPase as a function of pH closely resembles the pH curve for the activity of the H+-ATPase. This suggests that binding of protons to transport sites may stabilize the soluble H+-ATPase in an enzymatically active form.  相似文献   

19.
Plantago species differ in their strategy towards salt stress, a major difference being the uptake and distribution of Na+ ions. A salt-sensitive ( Plantago media L.) and a salt-tolerant ( P. maritima L.) species were compared with respect to Na+/H+ antiport activities at the tonoplast. After exposure of the plants to 50 m M NaCl for 6 days isolated tonoplast vesicles of P. maritima showed Na+/H+ antiport activity with saturation kinetics and a Km of 2.4 m M Na+, NaCl-grown P. media and the control plants of both species showed no antiport activity. Selectivity of the antiport system for Na+ was high and was determined by adding different chloride salts after formation of a Δ pH in the vesicles. Specific tonoplast ATPase activities were similar in the two species and did not alter after exposure to NaCl stress.  相似文献   

20.
Plasma membranes of the marine cyanobacterium Spirulina subsalsa were tested for ATPase activity, and for involvement in salt stress. Transition of cells from saline to hypersaline medium enhances the respiratory activity associated with extrusion of Na+ and Cl, and persisting salt stress induces synthesis of respiratory enzymes in the plasma membranes. The membranes possess an ATPase, specific for ATP and Mg2+ and sensitive to orthovanadate and dicyclohexylcarbodiimide. Immunoblot analysis of plasma membrane polypeptides from Spirulina subsalsa with anti- Arabidopsis H+-ATPase serum identified a single polypeptide of 100 kDa, which cross-reacted with the antibodies. An unusual feature of this ATPase is a specific stimulation by Na+ ions. Prolonged adaptation of S. subsals cells to hypersaline conditions induced an increase in ATPase activity in subsequent plasma membrane preparations, as well as a higher content of the 100 kDa polypeptide. It is suggested that the ATPase investigated is an H+-pump, which is involved in extrusion of Na+ and in conferring resistance to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号