首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylanases are glycosidases mainly responsible for the hydrolysis of β-1,4 linkages in xylan. Xylanase was produced in this work by solid-state fermentation using agro industrial residues with Aspergillus niger strain, which was screened through qualitative and quantitative methods. Extraction processes with different solvents were evaluated. Solvent volume, time, and agitation speed (shaker) were optimized using statistical designs. Drying studies of the solid fermented material were also conducted in a laboratory oven where the following conditions were applied: 42°C and 50°C for 20 h and 80°C for 1 h; 50°C and 75°C for 6 and 3 h, respectively. Best extraction conditions were 37 mL of solvent composed by NaCl solution (0.9%) with Tween 80 (0.1%) in 3 g of cultured material with agitation at 133 rpm in shaker for 4 min. Highest xylanase activity was 2,327 IU/gdm. The drying at 42°C for 20 h provided a better maintenance of xylanase activity (58% of xylanase activity).  相似文献   

2.
Xylanase production by the Antarctic psychrophilic yeast Cryptococcus adeliae was increased 4.3 fold by optimizing the culture medium composition using statistical designs. The optimized medium containing 24.2 g l−1 xylan and 10.2 g l−1 yeast extract and having an initial pH of 7.5 yielded xylanase activity at 400 nkat (nanokatal) ml−1 after 168-h shake culture at 4°C. In addition, very little endoglucanase, β-mannanase, β-xylosidase, β-glucosidase, α-l-arabinofuranosidase, and no filter paper cellulase activities were detected. Among 12 carbon sources tested, maximum xylanase activity was induced by xylan, followed by lignocelluloses such as steamed wheat straw and alkali-treated bagasse. The level of enzyme activity produced on other carbon sources appeared to be constitutive. Among the complex organic nitrogen sources tested, the xylanase activity was most enhanced by yeast extract, followed by soymeal, Pharmamedia (cotton seed protein), and Alburex (potato protein). A batch culture at 10°C in a 5-l fermenter (3.5-1 working volume) using the optimized medium gave 385 nkat at 111 h of cultivation. The crude xylanase showed optimal activity at pH 5.0–5.5 and good stability at pH 4–9 (21 h at 4°C). Although the enzyme was maximally active at 45°–50°C, it appeared very thermolabile, showing a half-life of 78 min at 35°C. At 40°–50°C, it lost 71%–95% activity within 5 min. This is the first report on the production as well as on the properties of thermolabile xylanase produced by an Antarctic yeast. Received: December 10, 1999 / Accepted: March 23, 2000  相似文献   

3.
Xylanase produced by E. coli HB 101 carrying plasmid pCX311, which contains the xylanase A gene of alkalophilic Bacillus sp. strain C-125, was purified by ammonium sulfate precipitation, DEAE-cellulose column chromatography and Sephadex G-75 gel filtration. The purified enzyme had a molecular weight of 43,000. The pH and temperature optima for its activity were 6~10 and 70°C, respectively. The enzyme retained full activity after incubation at 50°C for 10 min. These enzymatic properties of the xylanase were almost the same as those of xylanase A. But this enzyme was less stable than xylanase A at low pHs. Furthermore, we could purify a larger amount of alkaline xylanase from E. coli than from alkalophilic Bacillus sp. strain C-125.  相似文献   

4.
Summary Six mutant xylanases were obtained by in vitro mutagenesis of a xylanase gene from the extremely thermophilic bacterium Caldocellum saccharolyticum. The temperature stability of all enzymes was affected by mutation to various degrees and one of the xylanases had an altered temperature optimum. The mutations had no effect on the pH optimum. The C. saccharolyticum xylanase showed strong homology to several thermophilic and mesophilic xylanases, and comparison of primary sequences allowed the localization of probable active sites and residues involved in thermostability. Offprint requests to: P. L. Bergquist  相似文献   

5.
Psychrotrophic strains of Acidithiobacillus ferrooxidans have an important role in metal leaching and acid mine drainage (AMD) production in colder mining environments. We investigated cytoplasmic membrane fluidity and fatty acid alterations in response to low temperatures (5 and 15°C). Significant differences in membrane fluidity, measured by polarization (P) of 1,6-diphenyl-1,3,5-hexatriene (DPH), were found where the psychrotrophic strains had a significantly more rigid membrane (P range = 0.41–0.45) and lower transition temperature midpoints (T m = 2.0°C) and broader transition range than the mesophilic strains (P range = 0.38–0.39; T m = 2.0–18°C) at cold temperatures. Membrane remodeling was evident in all strains with a common trend of increased unsaturated fatty acid component in response to lower growth temperatures. In psychrotrophic strains, decreases in 12:0 fatty acids distinguished the 5°C fatty acid profiles from those of the mesophilic strains that showed decreases in 16:0, 17:0, and cyclo-19:0 fatty acids. These changes were also correlated with the observed changes in membrane fluidity (R 2 = 63–97%). Psychrotrophic strains employ distinctive modulation of cytoplasmic membrane fluidity with uncommon membrane phase changes as part of their adaptation to the extreme AMD environment in colder climates.  相似文献   

6.
A mesophilic xylanase from Aspergillus oryzae CICC40186 (abbreviated to AoXyn11A) belongs to glycoside hydrolase family 11. The thermostability of AoXyn11A was significantly improved by substituting its N‐terminus with the corresponding region of a hyperthermostable family 11 xylanase, EvXyn11TS. The suitable N‐terminus of AoXyn11A to be replaced was selected by the comparison of B‐factors between AoXyn11A and EvXyn11TS, which were generated and calculated after a 15 ns molecular dynamic (MD) simulation process. Then, the predicted hybrid xylanase (designated AEx11A) was modeled, and subjected to a 2 ns MD simulation process for calculating its total energy value. The N‐terminus substitution was confirmed by comparing the total energy value of AEx11A with that of AoXyn11A. Based on the in silico design, the AEx11A was constructed and expressed in Pichia pastoris GS115. After 72 h of methanol induction, the recombinant AEx11A (reAEx11A) activity reached 82.2 U/mL. The apparent temperature optimum of reAEx11A was 80°C, much higher than that of reAoXyn11A. Its half‐life was 197‐fold longer than that of reAoXyn11A at 70°C. Compared with reAoXyn11A, the reAEx11A displayed a slight alteration in Km but a decrease in Vmax. Biotechnol. Bioeng. 2013; 110: 1028–1038. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Xylanase is one of the most important hemicellulases in industry. However, its low thermostability limits its applications. In this study, one thermostable xylanase-producing strain 400264 was obtained from screening 11 Aspergillus niger strains (producing thermotolerant xylanase), and the optimum temperature of crude xylanase extracted from it was 55°C. Original activity of the crude xylanase is 64% at 60°C and 55% at 85°C with an incubation time of 30 min, respectively. After the expression of recombinant xylanase gene (xynA/xynB), the XYNB (xylanase B) showed higher thermostability than XYNA (xylanase A). Recombinant enzyme XYNB retained 94% of its activity for 10 min at 85°C, while XYNA with no activity left. Site-directed mutagenesis was performed to replace Ala33 of XYNB by Ser33 resulting 19% decrease in enzyme activity after incubating at 85°C for 30 min. It suggested that the Ala33 residue may have a certain effect on the thermophilic adaptation of xylanase.  相似文献   

8.
A halophilic and alkali-tolerant Chromohalobacter sp. TPSV 101 with an ability to produce extracellular halophilic, alkali-tolerant and moderately thermostable xylanase was isolated from solar salterns. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. The culture conditions for higher xylanase production were optimized with respect to NaCl, pH, temperature, substrates and metal ions and additives. Maximum xylanase production was achieved in the medium with 20% NaCl, pH-9.0 at 40°C supplemented with 1% (w/v) sugarcane bagasse and 0.5% feather hydrolysate as carbon and nitrogen sources. Sugarcane bagasse (250 U/ml) and wheat bran (190 U/ml) were the best inducer of xylanase when used as carbon source as compared to xylan (61 U/ml). The xylanase that was partially purified by protein concentrator had a molecular mass of 15 kDa approximately. The xylanase from Chromohalobacter sp. TPSV 101 was active at pH 9.0 and required 20% NaCl for optimal xylanolytic activity and was active over a broad range of temperature 40–80°C with 65°C as optimum. The early stage hydrolysis products of sugarcane bagasse were xylose and xylobiose, after longer periods of incubation only xylose was detected.  相似文献   

9.
A thermophilic xylanase from Bacillusstrain D3 suitable for use as a bleach booster in the paper pulping industry has been identified and characterized. The enzyme is suited to the high temperature and alkaline conditions needed for using xylanases in the pulp industry. The xylanase is stable at 60°C and relatively stable at high temperatures, with a temperature optimum of 75°C. The pH optimum is 6, but the enzyme is active over a broad pH range. The xylanase has been cloned and sequenced, and the crystal structure has been determined. The structure of BacillusD3 xylanase reveals an unusual feature of surface aromatic residues, which form clusters or “sticky patches” between pairs of molecules. These “sticky patches” on the surface of the enzyme are responsible for the tendency of the protein to aggregate at high concentrations in the absence of reagents such as ethylene glycol. The formation of dimers and higher order polymers via these hydrophobic contacts may also contribute to the thermostability of this xylanase. Proteins 29:77–86, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Bacillus sp. NTU-06 was used to produce xylanase, which is an important industrial enzyme used in the pulp and paper industry. The enzyme was purified by fast protein liquid chromatography (FPLC) and had a molecular mass of 24 kDa. The enzyme was active over a concentration range of 0–20% sodium chloride in culture broth, although its activity was optimal in 5% sodium chloride. A salinity stability test showed that 43% of the enzyme activity was retained after 4 h in 20% sodium chloride. Xylanase activity was maximal at pH 8.0 and 40°C. The enzyme was somewhat thermostable, retaining 20% of the original activity after incubation at 70°C for 4 h. The xylanase had Km and Vmax values of 3.45 mg mL−1 and 387.3 µmol min−1mg−1, respectively. The deduced internal amino acid sequence of Bacillus sp. NTU-06 xylanase resembled the sequence of beta-1,4-endoxylanase, which is a member of glycoside hydrolase family 11. Some of the novel characteristics that make this enzyme potentially effective in xylan biodegradation are discussed.  相似文献   

11.
Anaerobic fungi belonging to the family Neocallimastigaceae are native inhabitants in the rumen of the most herbivores, such as cattle, sheep and goats. A member of this unique group, Neocallimastix sp. GMLF2 was isolated from cattle feces and screened for its xylanase encoding gene using polymerase chain reaction. The gene coding for a xylanase (xyn2A) was cloned in Escherichia coli and expression was monitored. To determine the enzyme activity, assays were conducted for both fungal xylanase and cloned xylanase (Xyl2A) for supernatant and cell-associated activities. Optimum pH and temperature of the enzyme were found to be 6.5 and 50°C, respectively. The enzyme was stable at 40°C and 50°C for 20 min but lost most of its activity when temperature reached 60°C for 5-min incubation time. Rumen fungal xylanase was mainly released to the supernatant of culture, while cloned xylanase activity was found as cell-associated. Multiple alignment of the amino acid sequences of Xyl2A with published xylanases from various organisms suggested that Xyl2A belongs to glycoside hydrolase family 11.  相似文献   

12.
The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular alkaliphilic, thermostable and halotolerent xylanase. The culture conditions for xylanase production were optimized with respect to pH, temperature, NaCl and inexpensive agro waste as substrates. Xylanase yield was enhanced more than four fold in the presence of 1% corn husk and 0.5% peptone or feather hydrolysate at pH 11 and 37°C. Xylanase was purified to 11.8-fold with 8.7% yield by using traditional chromatographic methods whereas the same enzyme purified to 20-fold with 72% yield by using corn husk as ligand. Its molecular mass was estimated to be 24 kDa by SDS–PAGE. The xylanase had maximal activity at pH 11 and 70°C. The enzyme was active over broad range, 0–20% sodium chloride. The enzyme was thermostable retaining 100% of the original activity at 70°C for 3 h. The apparent K m values for oat spelt xylan and brichwood xylan were 4.1 and 4.4 mg/ml respectively. The deduced internal amino acid sequence of PPKS-2 xylanase resembled the sequence of β-1,4-endoxylanase, which is member of glycoside hydrolase family 11.  相似文献   

13.
A mesophilic Aspergillus oryzae xylanase (AoXyn11A) belongs to glycoside hydrolase family 11. Hydrogen bonds and a disulfide bridge were introduced between the N-terminus extension and the β-sheet A2 of AoXyn11A, which were located in the corresponding region of a hyperthermostable xylanase. The mutants were designated as AoXyn11AC5 and AoXyn11AC5–C32, respectively. The thermostabilities of AoXyn11A and the mutants were assessed by the molecular dynamics simulations. After being incubated at 55 °C for 30 min, AoXyn11AC5–C32 retained 49 % of its original activity, AoXyn11AC5 retained 12 % and AoXyn11A retained 3 %. The interactions between the N-terminus extension and the β-sheet A2 were analyzed in depth: there was enhancement of the interactions between the N-terminus extension and the β-sheet A2 of AoXyn11A that improved its thermostability.  相似文献   

14.
A Clostridium thermocellum gene, xynX, coding for a xylanase was cloned and the complete nucleotide sequence was determined. The xylanase gene of Clostridium thermocellum consists of an ORF of 3261 nucleotide encoding a xylanase (XynX) of 1087 amino acid residues (116 kDa). Sequence analysis of XynX showed a multidomain structure that consisted of four different domains: an N-terminal thermostabilizing domain homologous to sequences found in several thermophilic enzymes, a catalytic domain homologous to family 10 glycosyl hydrolases, a duplicated cellulose-binding domain (CBD) homologous to family IX CBDs, and a triplicated S-layer homologous domain. A deletion mutant of xynX having only the catalytic region produced a mutant enzyme XynX-C which retained catalytic activity but lost thermostability. In terms of half-life at 70 °C, the thermostability of XynX-C was about six times lower than that of the other mutant enzyme, XynX-TC, produced by a mutant containing both the thermostabilizing domain and the catalytic domain. The optimum temperature of XynX-C was about 5–10 °C lower than that of XynX-TC. Received: 12 January 2000 / Received revision: 24 April 2000 / Accepted: 1 May 2000  相似文献   

15.
A gene encoding a xylanase, named xynS20, was cloned from the ruminal fungus Neocallimastix patriciarum. The DNA sequence of xynS20 revealed that the gene was 1,008 bp in size and encoded amino acid sequences with a predicted molecular weight of 36 kDa. The amino acid sequence alignment showed that the highest sequence identity (28.4%) is with insect gut xylanase XYL6805. According to the sequence-based classification, a putative conserved domain of glycosyl hydrolase family 11 was detected at the N-terminus of XynS20 and a putative conserved domain of family 1 carbohydrate-binding module (CBM) was observed at the C-terminus of XynS20. An Asn-rich linker sequence was found between the N-terminal catalytic domain and the C-terminal CBM of XynS20. To examine the activity of the gene product, xynS20 gene was cloned as an oleosin-fused protein, expressed in Escherichia coli, affinity-purified by formation of artificial oil bodies, released from oleosin by intein-mediated peptide cleavage, and finally harvested by concentration of the supernatant. The specific activity of purified XynS20 toward oat spelt xylan was 1,982.8 U mg−1. The recombinant XynS20 was stable in the mild acid pH range from 5.0 to 6.0, and the optimum pH was 6.0. The optimal reaction temperature of XynS20 was 45°C; at temperatures below 30 and above 55°C, enzyme activity was less than 50% of that at the optimal temperature.  相似文献   

16.
A new xylanase from a Trichoderma harzianum strain   总被引:1,自引:0,他引:1  
A new xylanase (XYL2) was purified from solid-state cultures of Trichoderma harzianum strain C by ultrafiltration and gel filtration. SDS-PAGE of the xylanase showed an apparent homogeneity and molecular weight of 18 kDa. It had the highest activity at pH 5.0 and 45°C and was stable at 50°C and pH 5.0 up to 4 h xylanase. XYL2 had a low K m with insoluble oat spelt xylan as substrate. Compared to the amino acid composition of xylanases from Trichoderma spp, xylanase XYL2 presented a high content of glutamate/glutamine, phenylalanine and cysteine, and a low content of serine. Xylanase XYL2 improved the delignification and selectivity of unbleached hardwood kraft pulp. Received 02 February 1999/ Accepted in revised form 17 April 1999  相似文献   

17.
The halotolerance of a cold adapted α-amylase from the psychrophilic bacterium Pseudoalteromonas haloplanktis (AHA) was investigated. AHA exhibited hydrolytic activity over a broad range of NaCl concentrations (0.01–4.5 M). AHA showed 28% increased activity in 0.5–2.0 M NaCl compared to that in 0.01 M NaCl. In contrast, the corresponding mesophilic (Bacillus amyloliquefaciens) and thermostable (B. licheniformis) α-amylases showed a 39 and 46% decrease in activity respectively. Even at 4.5 M NaCl, 80% of the initial activity was detected for AHA, whereas the mesophilic and thermostable enzymes were inactive. Besides an unaltered fluorescence emission and secondary structure, a 10°C positive shift in the temperature optimum, a stabilization factor of >5 for thermal inactivation and a ΔT m of 8.3°C for the secondary structure melting were estimated in 2.7 M NaCl. The higher activation energy, half-life time and T m indicated reduced conformational dynamics and increased rigidity in the presence of higher NaCl concentrations. A comparison with the sequences of other halophilic α-amylases revealed that AHA also contains higher proportion of small hydrophobic residues and acidic residues resulting in a higher negative surface potential. Thus, with some compromise in cold activity, psychrophilic adaptation has also manifested halotolerance to AHA that is comparable to the halophilic enzymes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This article is dedicated to Late Dr. P. V. Sundaram.  相似文献   

18.
The endo-β-1, 4-xylanase gene xynA from Aspergillus sulphureus, encoded a lack-of-signal peptide protein of 184 amino acids, was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein’s codon bias. The synthetic DNA, composed of 572 nucleotides, was ligated into the downstream sequence of an α-mating factor in a constitutive expression vector pGAPzαA and electrotransformed into the P. pastoris X-33 strain. The transformed yeast screened by Zeocin was able to constitutively secrete the xylanase in yeast–peptone–dextrose liquid medium. The heterogenous DNA was stabilized in the strain by 20-times passage culture. The recombinant enzyme was expressed with a yield of 120 units/mL under the flask culture at 28°C for 3 days. The enzyme showed optimal activity at 50°C and pH 2.4–3.4. Residual activity of the raw recombinant xylanase was not less than 70% when fermentation broth was directly heated at 80°C for 30 min. However, the dialyzed xylanase supernatant completely lost the catalytic activity after being heated at 60°C for 30 min. The recombinant xylanase showed no obvious activity alteration by being pretreated with Na2HPO4-citric acid buffer of pH 2.4 for 2 h. The xylanase also showed resistance to certain metal ions (Na+, Mg2+, Ca2+, K+, Ba2+, Zn2+, Fe2+, and Mn2+) and EDTA. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.  相似文献   

19.
Summary Xylanase was produced by growing Chaetomium thermophile NIBGE in a submerged liquid culture using wheat straw and urea as carbon and nitrogen sources respectively. The xylanase was purified to electrophoretic homogeneity after ammonium sulphate precipitation, anion exchange chromatography by FPLC and gel filtration. The molecular mass of this xylanase BII was 50 kDa. The pH and temperature optima were 6.5 and 70 °C respectively. The xylanase BII showed reasonable stability at high pH and 65 °C temperature. Some metal ions and EDTA caused little inhibition at low concentrations but complete inhibition was observed at concentrations higher than 2 mM. The Km and Vmax values with oat spelt xylan as the substrate were found to be 12.5 mg/ml and 83.3 IU/mg protein, respectively. Liberation of reducing sugars from commercial paper pulp samples suggest the feasibility of a biopulping process using this xylanase.  相似文献   

20.
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 °C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 °C and pH 6.5 for A. terricola, and 65 °C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 °C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t 50 of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4–3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and β-xylosidase were detected which might act synergistically with xylanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号