首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reproduce global features of respiratory sinus arrhythmia (RSA), a prominent source of heart rate variability, from two signals coupled in alternate fashion so dominance periodically switches back and forth between them. We consider two different possibilities for this coupling and illustrate our method with numerical simulations that we contrast with the corresponding results from real data. We interpret our findings within the context of the two-pacemaker model of the heartbeat, an alternative to the single-pacemaker mechanism of pulse generation in the orthodox conduction model.  相似文献   

2.
Heart rate increases during inspiration and slows during postinspiration; this respiratory sinus arrhythmia helps match pulmonary blood flow to lung inflation and maintain an appropriate diffusion gradient of oxygen in the lungs. This cardiorespiratory pattern is found in neonatal and adult humans, baboons, dogs, rabbits, and seals. Respiratory sinus arrhythmia occurs mainly due to inhibition of cardioinhibitory parasympathetic cardiac vagal neurons during inspiration. Surprisingly, however, a recent study in anesthetized rats paradoxically found an enhancement of cardiac vagal activity during inspiration, suggesting that rats have an inverted respiratory sinus arrhythmia (Rentero N, Cividjian A, Trevaks D, Pequignot JM, Quintin L, and McAllen RM. Am J Physiol Regul Integr Comp Physiol 283: R1327-R1334, 2002). To address this controversy, this study examined respiratory sinus arrhythmia in conscious freely moving rats and tested whether the commonly used experimental anesthetics urethane, pentobarbital sodium, or ketamine-xylazine alter respiratory sinus arrhythmia. Heart rate significantly increased 21 beats/min during inspiration in conscious rats, a pattern similar to the respiratory sinus arrhythmia that occurs in other species. However, anesthetics altered normal respiratory sinus arrhythmia. Ketamine-xylazine (87 mg/kg and 13 mg/kg) depressed and pentobarbital sodium (60 mg/kg) abolished normal respiratory sinus arrhythmia. Urethane (1 g/kg) inverted the cardiorespiratory pattern so that heart rate significantly decreased during inspiration. Our study demonstrates that heart rate normally increases during inspiration in conscious, freely moving rats, similar to the respiratory sinus arrhythmia pattern that occurs in other species but that this pattern is disrupted in the presence of general anesthetics, including inversion in the case of urethane. The presence and consequences of anesthetics need to be considered in studying the parasympathetic control of heart rate.  相似文献   

3.
Respiratory sinus arrhythmia in the denervated human heart   总被引:8,自引:0,他引:8  
We performed this study to test whether the denervated human heart has the ability to manifest respiratory sinus arrhythmia (RSA). With the use of a highly sensitive spectral analysis technique (cross correlation) to define beat-to-beat coupling between respiratory frequency and heart rate period (R-R) and hence RSA, we compared the effects of patterned breathing at defined respiratory frequency and tidal volumes (VT), Valsalva and Mueller maneuvers, single deep breaths, and unpatterned spontaneous breathing on RSA in 12 normal volunteers and 8 cardiac allograft transplant recipients. In normal subjects R-R changes closely followed changes in respiratory frequency (P less than 0.001) but were little affected by changes in VT. On the R-R spectrum, an oscillation peak synchronous with respiration was found in heart transplant patients. However, the average magnitude of the respiration-related oscillations was 1.7-7.9% that seen in normal subjects and was proportionally more influenced by changes in VT. Changes in R-R induced by Valsalva and Mueller maneuvers were 3.8 and 4.9% of those seen in normal subjects, respectively, whereas changes in R-R induced by single deep breaths were 14.3% of those seen in normal subjects. The magnitude of RSA was not related to time since the heart transplantation, neither was it related to patient age or sex. Thus the heart has the intrinsic ability to vary heart rate in synchrony with ventilation, consistent with the hypothesis that changes, or rate of changes, in myocardial wall stretch might alter intrinsic heart rate independent of autonomic tone.  相似文献   

4.
The effects of L-carnitine on respiratory chain enzymes in muscle of long distance runners were studied in 14 athletes. These subjects received placebo or L-carnitine (2 g orally b.i.d.) during a 4-week period of training. Athletes receiving L-carnitine showed a significant increase (p < 0.01) in the activities of rotenone-sensitive NADH cytochrome c reductase, succinate cytochrome c reductase and cytochrome oxidase. In contrast, succinate dehydrogenase and citrate synthase were unchanged. No significant changes were observed after placebo administration. The levels of both total and free carnitine from athletes receiving placebo were significantly decreased (p < 0.01) after treatment. By contrast, total and free carnitine levels were markedly increased (p < 0.01) after supplementation with L-carnitine. Our results suggest that L-carnitine induces an increase of the respiratory chain enzyme activities in muscle, probably by mechanisms involving mitochondrial DNA.  相似文献   

5.
The presented study describes the influence of respiration on heart rate, under controlled respiration conditions. In addition, this study makes a comparison of a simple physical model, the spring-mass system, with the biophysics of respiration. It is possible to use the equations describing the behaviour of the respiratory system, under certain conditions, and analyse them in a way similar to the equations that describe the physical spring-mass system. The results of the heart rate and respiration measurements effected on 10 subjects at various respiration frequencies show us that the heart rate behaves as a second order system within the boundary conditions during a longer period of constant respiration. The results also show that the heart rate behaves as a second order system within the intermediate mode during short time intervals when there is no respiration.  相似文献   

6.
7.
The degree of parasympathetic heart rate control, PC, was defined as the decrease in average heart period (RR interval) caused by the elimination of parasympathetically mediated influences on the heart while keeping sympathetic activity unchanged. By reviewing published results on the interaction of sympathetic and parasympathetic heart rate control, the prediction was made that PC should be directly proportional to VHP, the peak-to-peak variations in heart period caused by spontaneous respiration. In sevel chloralose/urethan-anesthetized dogs the vagi were reversibly blocked by cooling, and PC (the difference between average heart period before and after cooling) and VHP (without cooling) were determined under a variety of conditions that included a) increasing vagal activity by elevating the blood pressure b) sympathetic blockade, and c) parasympathetic blockade. The relationship between VHP and PC was linear with an average correlation coefficient of 0.969 +/- 0.024 (SD) and a PC-axis intercept of 15.2 +/- 25.9 ms. In each dog the correlation coefficient between VHP and PC was higher than between VHP and the average heart period (avg correlation coef: 0.914 +/- 0.044). These results suggest that the degree of respiratory sinus arrhythmia may be used as a noninvasive indicator of the degree of parasympathetic cardiac control.  相似文献   

8.
The purpose of this study was to compare the effect of 2 training programs differing in the relative contribution of training volume, clearly below vs. within the lactate threshold/maximal lactate steady state region on performance in endurance runners. Twelve subelite endurance runners (who are specialists in track events, mostly the 5,000-m race usually held during spring-summer months and who also participate in cross-country races [9-12 km] during fall and winter months) were randomly assigned to a training program emphasizing low-intensity (subthreshold) (Z1) or moderately high-intensity (between thresholds) (Z2) training intensities. At the start of the study, the subjects performed a maximal exercise test to determine ventilatory (VT) and respiratory compensation thresholds (RCT), which allowed training to be controlled based on heart rate during each training session over a 5-month training period. Subjects performed a simulated 10.4-km cross-country race before and after the training period. Training was quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity; RCT). The contribution of total training time spent in zones 1 and 2 was controlled to have relatively more low-intensity training in Z1 (80.5 +/- 1.8% and 11.8 +/- 2.0%, respectively) than in Z2 (66.8 +/- 1.1% and 24.7 +/- 1.5%, respectively), whereas the contribution of high-intensity (zone 3) training was similar (8.3 +/- 0.7% [Z1] and 8.5 +/- 1.0% [Z2]). The magnitude of the improvement in running performance was significantly greater (p = 0.03) in Z1 (-157 +/- 13 seconds) than in Z2 (-121.5 +/- 7.1 seconds). These results provide experimental evidence supporting the value of a relatively large percentage of low-intensity training over a long period ( approximately 5 months), provided that the contribution of high-intensity training remains sufficient.  相似文献   

9.
10.
Metabolic response of endurance athletes to training with added load   总被引:1,自引:0,他引:1  
Endurance athletes were divided into experimental (n = 12) and control (n = 12) groups to investigate the effects of extra-load training on energy metabolism during exercise. A vest weighing 9%-10% body weight was worn every day from morning to evening for 4 weeks including every (n = 6) or every other (n = 6) training session. After 4 weeks the control group had a lower blood lactate concentration during submaximal running, whereas the experimental group had significantly higher blood lactate and oxygen uptake (p less than 0.01--p less than 0.05), and a lower 2 mmol lactate threshold (p less than 0.05) and an increased blood lactate concentration after a short running test to exhaustion (p less than 0.05). Those experimental subjects (n = 6) who used the added load during every training session had a lower 2 mmol lactate threshold, improved running time to exhaustion, improved vertical velocity when running up stairs and an increased VO2 during submaximal running after the added load increased anaerobic metabolism in the leg muscle during submaximal and maximal exercise. An increased recruitment and adaptation of the fast twitch muscle fibres is suggested as the principal explanation for the observed changes.  相似文献   

11.
Ambulatory respiratory sinus arrhythmia (RSA) or high-frequency heart rate (HR) variability is frequently employed as an index of cardiac parasympathetic control and related to risk or severity of cardiovascular disease. However, laboratory studies indicate variations in physical activity and respiratory parameters of rate and tidal volume may confound estimation of vagal activity. Because little is known about these relations outside the laboratory, we examined ambulatory relations among RSA, respiration, physical activity, and HR during waking hours by employing a multichannel monitoring system. Forty healthy young-to-middle aged adults underwent daytime monitoring that included continuous registration of the ECG, respiration (inductance plethysmography), and accelerometry motion activity. Within-individual regression analyses were performed to examine minute-to-minute relations between RSA and respiration, HR, and indexes of physical activity (minute ventilation and motion). HR changes were assumed to be strongly related to within-individual variations of vagal tone. RSA adjusted for respiratory parameters and unadjusted RSA were compared for strength of prediction of other measures. Unadjusted RSA was related to respiratory parameters (R = 0.80) and moderately predicted minute-to-minute HR and activity variances (means = 56%, HR; 48%, minute ventilation; and 37%, motion). Adjusted RSA predicted significantly more HR and activity variance (means = 75%, 76%, and 57%, respectively) with narrower confidence intervals. We conclude that ambulatory RSA magnitude is associated with respiratory variations and physical activity. Adjustment for respiratory parameters substantially improves relations between RSA and significantly vagally mediated HR and physical activity. Concurrent monitoring of respiration and physical activity may enhance HR variability accuracy to predict autonomic control.  相似文献   

12.
Respiratory sinus arrhythmia (RSA)--the peak-to-peak variations in heart rate caused by respiration--can be used as a noninvasive measure of parasympathetic cardiac control. In the present study four strategies to increase RSA amplitude are investigated: (1) biofeedback of RSA amplitude, (2) biofeedback of RSA amplitude plus respiratory instructions, (3) respiratory biofeedback, and (4) respiratory instructions only. All four procedures produce a significant increase of RSA amplitude from the first physiological control trial compared to baseline. This increase is faster for the groups that received respiratory biofeedback and respiratory instructions only than for the two groups that received biofeedback of RSA amplitude, the increases being equivalent for the four groups in the third session. All subjects of the group that received biofeedback of RSA amplitude only reported respiratory strategies in order to achieve the increase in RSA. Possible clinical implications of these results for parasympathetic cardiac control and cardiovascular disorders are discussed.  相似文献   

13.
We determined how close highly trained athletes [n = 8; maximal oxygen consumption (VO2max) = 73 +/- 1 ml.kg-1.min-1] came to their mechanical limits for generating expiratory airflow and inspiratory pleural pressure during maximal short-term exercise. Mechanical limits to expiratory flow were assessed at rest by measuring, over a range of lung volumes, the pleural pressures beyond which no further increases in flow rate are observed (Pmaxe). The capacity to generate inspiratory pressure (Pcapi) was also measured at rest over a range of lung volumes and flow rates. During progressive exercise, tidal pleural pressure-volume loops were measured and plotted relative to Pmaxe and Pcapi at the measured end-expiratory lung volume. During maximal exercise, expiratory flow limitation was reached over 27-76% of tidal volume, peak tidal inspiratory pressure reached an average of 89% of Pcapi, and end-inspiratory lung volume averaged 86% of total lung capacity. Mechanical limits to ventilation (VE) were generally reached coincident with the achievement of VO2max; the greater the ventilatory response, the greater was the degree of mechanical limitation. Mean arterial blood gases measured during maximal exercise showed a moderate hyperventilation (arterial PCO2 = 35.8 Torr, alveolar PO2 = 110 Torr), a widened alveolar-to-arterial gas pressure difference (32 Torr), and variable degrees of hypoxemia (arterial PO2 = 78 Torr, range 65-83 Torr). Increasing the stimulus to breathe during maximal exercise by inducing either hypercapnia (end-tidal PCO2 = 65 Torr) or hypoxemia (saturation = 75%) failed to increase VE, inspiratory pressure, or expiratory pressure. We conclude that during maximal exercise, highly trained individuals often reach the mechanical limits of the lung and respiratory muscle for producing alveolar ventilation. This level of ventilation is achieved at a considerable metabolic cost but with a mechanically optimal pattern of breathing and respiratory muscle recruitment and without sacrifice of a significant alveolar hyperventilation.  相似文献   

14.
Respiratory sinus arrhythmia (RSA) may be associated with improved efficiency of pulmonary gas exchange by matching ventilation to perfusion within each respiratory cycle. Respiration rate, tidal volume, minute ventilation (.VE), exhaled carbon dioxide (.VCO(2)), oxygen consumption (.VO(2)), and heart rate were measured in 10 healthy human volunteers during paced breathing to test the hypothesis that RSA contributes to pulmonary gas exchange efficiency. Cross-spectral analysis of heart rate and respiration was computed to calculate RSA and the coherence and phase between these variables. Pulmonary gas exchange efficiency was measured as the average ventilatory equivalent of CO(2) (.VE/.VCO(2)) and O(2) (.VE/.VO(2)). Across subjects and paced breathing periods, RSA was significantly associated with CO(2) (partial r = -0.53, P = 0.002) and O(2) (partial r = -0.49, P = 0.005) exchange efficiency after controlling for the effects of age, respiration rate, tidal volume, and average heart rate. Phase between heart rate and respiration was significantly associated with CO(2) exchange efficiency (partial r = 0.40, P = 0.03). These results are consistent with previous studies and further support the theory that RSA may improve the efficiency of pulmonary gas exchange.  相似文献   

15.
16.
17.
Gender differences in substrate selection have been reported during endurance exercise. To date, no studies have looked at muscle enzyme adaptations following endurance exercise training in both genders. We investigated the effect of a 7-week endurance exercise training program on the activity of beta-oxidation, tricarboxylic acid cycle and electron transport chain enzymes, and fiber type distribution in males and females. Training resulted in an increase in VO2peak, for both males and females of 17% and 22%, respectively (P < 0.001). The following muscle enzyme activities increased similarly in both genders: 3-beta-hydroxyacyl CoA dehydrogenase (38%), citrate synthase (41%), succinate-cytochrome c oxidoreductase (41%), and cytochrome c oxidase (COX; 26%). The increase in COX activity was correlated (R2 = 0.52, P < 0.05) with the increase in VO2peak/fat free mass. Fiber area, size, and % area were not affected by training for either gender, however, males had larger Type II fibers (P < 0.05) and females had a greater Type I fiber % area (P < 0.05). Endurance training resulted in similar increases in skeletal muscle oxidative potential for both males and females. Training did not affect fiber type distribution or size in either gender.  相似文献   

18.
The purpose of this experiment was to examine the effects of concurrent endurance and explosive strength training on electromyography (EMG) and force production of leg extensors, sport-specific rapid force production, aerobic capacity, and work economy in cross-country skiers. Nineteen male cross-country skiers were assigned to an experimental group (E, n = 8) or a control group (C, n = 11). The E group trained for 8 weeks with the same total training volume as C, but 27% of endurance training in E was replaced by explosive strength training. The skiers were measured at pre- and post training for concentric and isometric force-time parameters of leg extensors and EMG activity from the vastus lateralis (VL) and medialis (VM) muscles. Sport-specific rapid force production was measured by performing a 30-m double poling test with the maximal velocity (V(30DP)) and sport-specific endurance economy by constant velocity 2-km double poling test (CVDP) and performance (V(2K)) by 2-km maximal double poling test with roller skis on an indoor track. Maximal oxygen uptake (Vo(2)max) was determined during the maximal treadmill walking test with the poles. The early absolute forces (0-100 ms) in the force-time curve in isometric action increased in E by 18 +/- 22% (p < 0.05), with concomitant increases in the average integrated EMG (IEMG) (0-100 ms) of VL by 21 +/- 21% (p < 0.05). These individual changes in the average IEMG of VL correlated with the changes in early force (r = 0.86, p < 0.01) in E. V(30DP) increased in E (1.4 +/- 1.6%) (p < 0.05) but not in C. The V(2K) increased in C by 2.9 +/- 2.8% (p < 0.01) but not significantly in E (5.5 +/- 5.8%, p < 0.1). However, the steady-state oxygen consumption in CVDP decreased in E by 7 +/- 6% (p < 0.05). No significant changes occurred in Vo(2)max either in E or in C. The present concurrent explosive strength and endurance training in endurance athletes produced improvements in explosive force associated with increased rapid activation of trained leg muscles. The training also led to more economical sport-specific performance. The improvements in neuromuscular characteristics and economy were obtained without a decrease in maximal aerobic capacity, although endurance training was reduced by about 20%.  相似文献   

19.
20.
The purpose of this study was to investigate the influence of additional resistance training on cardiorespiratory endurance in young (15.8 ± 0.8 yrs) male basketball players. Experimental group subjects (n=23) trained twice per week for 12 weeks using a variety of general free-weight and machine exercises designed for strength acquisition, beside ongoing regular basketball training program. Control group subject (n=23) participated only in basketball training program. Oxygen uptake (VO(2max)) and related gas exchange measures were determined continuously during maximal exercise test using an automated cardiopulmonary exercise system. Muscle power of the extensors and flexors was measured by a specific computerized tensiometer. Results from the experimental group (VO(2max) 51.6 ± 5.7 ml.min(-1).kg(-1) pre vs. 50.9 ± 5.4 ml.min(-1).kg(-1) post resistance training) showed no change (p>0.05) in cardiorespiratory endurance, while muscle strength and power of main muscle groups increased significantly. These data demonstrate no negative cardiorespiratory performance effects on adding resistance training to ongoing regular training program in young athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号