首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental and occupational exposure to arsenic is associated with increased risk of skin, urinary bladder and respiratory tract cancers. Increasing evidence indicates that arsenic acts at the level of tumor promotion by modulating the signaling pathways responsible for cell growth. One of this pathways might include c-Src dependent EGFR and MAPK activation.  相似文献   

2.
Environmental and occupational exposure to arsenic is associated with increased risk of skin, urinary bladder and respiratory tract cancers. Increasing evidence indicates that arsenic acts at the level of tumor promotion by modulating the signaling pathways responsible for cell growth. One of this pathways might include c-Src dependent EGFR and MAPK activation.  相似文献   

3.
Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.  相似文献   

4.
In contrast to the well known cytotoxic effects of tumor necrosis factor (TNF) alpha in many mammary cancer cells, we have found that TNF stimulates the proliferation and motility of human mammary epithelial cells (HMECs). Since the response of HMECs to TNF is similar to effects mediated by epidermal growth factor receptor (EGFR) activation, we explored the potential role of cross-talk through the EGFR signaling pathways in mediating cellular responses to TNF. Using a microarray enzyme-linked immunoassay, we found that exposure to TNF stimulated the dose-dependent shedding of the EGFR ligand transforming growth factor alpha (TGFalpha). Both proliferation and motility of HMECs induced by TNF was prevented either by inhibiting membrane protein shedding with a metalloprotease inhibitor, by blocking epidermal growth factor receptor (EGFR) kinase activity, or by limiting ligand-receptor interactions with an antagonistic anti-EGFR antibody. EGFR activity was also necessary for TNF-induced release of matrix metalloprotease-9, thought to be an essential regulator of mammary cell migration. The cellular response to TNF was associated with a biphasic temporal pattern of extracellular signal-regulated kinase (ERK) phosphorylation, which was EGFR-dependent and modulated by inhibition of metalloprotease-mediated shedding. Significantly, the late phase of ERK phosphorylation, detectable within 4 h after exposure, was blocked by the metalloprotease inhibitor batimastat, indicating that autocrine signaling through ligand shedding was responsible for this secondary wave of ERK activity. Our results indicate a novel and important role for metalloprotease activation and EGFR transmodulation in mediating the cellular response to TNF.  相似文献   

5.
Arsenic (As) is both a human carcinogen and an effective anticancer drug. These aspects of arsenic toxicity develop as a consequence of arsenic-induced oxidative stress and modifications to signal pathway activity which alter gene expression. Resveratrol (RVL) a food antioxidant found in grapes and other fruits, exhibits anti-carcinogenic properties by reducing oxidative stress and restoring signal pathway control. This study investigated the impact of RVL on arsenite [As(III)]-induced cell signalling in HaCaT keratinocytes by assaying phosphorylation status of epidermal growth factor receptor (EGFR) signalling intermediates and measuring changes in expression of Phase II and DNA repair biomarkers. As(III) exposure produced dose-dependent toxicity which was associated with increased activation of EGFR pathway intermediates, cSrc, Rac1 and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Arsenic-mediated ERK1/2 activation negatively regulated DNA polymerase beta expression and up regulated heme-oxygenase-1 at toxic concentrations. RVL treatment modulated As(III)-mediated ERK1/2 activation by shifting the balance of cSrc regulatory domain phosphorylation. These effects significantly altered the response of the EGFR pathway to growth factor-induced stimulation. Our research provides evidence that treatment with pharmacologically relevant doses of RVL influences cellular responses to As(III), largely due to RVL-mediated changes to Src and ERK1/2 activation.  相似文献   

6.
Prostaglandins (PGs), bioactive lipid molecules produced by cyclooxygenase enzymes (COX-1 and COX-2), have diverse biological activities, including growth-promoting actions on gastrointestinal mucosa. They are also implicated in the growth of colonic polyps and cancers. However, the precise mechanisms of these trophic actions of PGs remain unclear. As activation of the epidermal growth factor receptor (EGFR) triggers mitogenic signaling in gastrointestinal mucosa, and its expression is also upregulated in colonic cancers and most neoplasms, we investigated whether PGs transactivate EGFR. Here we provide evidence that prostaglandin E2 (PGE2) rapidly phosphorylates EGFR and triggers the extracellular signal-regulated kinase 2 (ERK2)--mitogenic signaling pathway in normal gastric epithelial (RGM1) and colon cancer (Caco-2, LoVo and HT-29) cell lines. Inactivation of EGFR kinase with selective inhibitors significantly reduces PGE2-induced ERK2 activation, c-fos mRNA expression and cell proliferation. Inhibition of matrix metalloproteinases (MMPs), transforming growth factor-alpha (TGF-alpha) or c-Src blocked PGE2-mediated EGFR transactivation and downstream signaling indicating that PGE2-induced EGFR transactivation involves signaling transduced via TGF-alpha, an EGFR ligand, likely released by c-Src-activated MMP(s). Our findings that PGE2 transactivates EGFR reveal a previously unknown mechanism by which PGE2 mediates trophic actions resulting in gastric and intestinal hypertrophy as well as growth of colonic polyps and cancers.  相似文献   

7.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin αvβ3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.  相似文献   

8.
9.
c-Src is a non-receptor tyrosine kinase that associates with both the plasma membrane and endosomal compartments. In many human cancers, especially breast cancer, c-Src and the EGF receptor (EGFR) are overexpressed. Dual overexpression of c-Src and EGFR correlates with a Src-dependent increase in activation of EGFR, and synergism between these two tyrosine kinases increases the mitogenic activity of EGFR. Despite extensive studies of the functional interaction between c-Src and EGFR, little is known about the interactions in the trafficking pathways for the two proteins and how that influences signaling. Given the synergism between c-Src and EGFR, and the finding that EGFR is internalized and can signal from endosomes, we hypothesized that c-Src and EGFR traffic together through the endocytic pathway. Here we use a regulatable c-SrcGFP fusion protein that is a bona fide marker for c-Src to show that c-Src undergoes constitutive macropinocytosis from the plasma membrane into endocytic compartments. The movement of c-Src was dependent on its tyrosine kinase activity. Stimulation of cells with EGF revealed that c-Src traffics into the cell with activated EGFR and that c-Src expression and kinase activity prolongs EGFR activation. Surprisingly, even in the absence of EGF addition, c-Src expression induced activation of EGFR and of EGFR-mediated downstream signaling targets ERK and Shc. These data suggest that the synergy between c-Src and EGFR also occurs as these two kinases traffic together, and that their co-localization promotes EGFR-mediated signaling.  相似文献   

10.
Kim SE  Choi KY 《Cellular signalling》2007,19(7):1554-1564
WNT3a stimulates proliferation of NIH3T3 cells via activation of the extracellular signal-regulated kinase (ERK) pathway. The RAF-1-->MEK-->ERK cascade was immediately increased by WNT3a treatment, however, the upstream event triggering ERK pathway activation by WNT3a is not clear. WNT3a activated RAS and WNT3a-induced ERK activation was blocked by dominant-negative RAS, indicating that WNT3a might act upstream of RAS. WNT3a-induced ERK pathway activations were blocked by AG1478, the epidermal growth factor receptor (EGFR) inhibitor, and EGFR siRNA. The WNT3a-induced ERK pathway activation was not observed in fibroblasts retaining defective EGFR, but the WNT3a effect was restored by EGFR reconstitution. These results indicate involvement of EGFR in the WNT3a-induced ERK pathway activation. WNT3a-induced motility and cytoskeletal rearrangement as well as proliferation of NIH3T3 cells were blocked by AG1478 and EGFR siRNA or abolished in EGFR knock-out fibroblasts, indicating involvement of EGFR in those cellular processes. WNT3a-induced ERK pathway activation was not affected by Dickkoff-1 (DKK-1), although WNT3a-induced activations of the WNT/beta-catenin pathway and proliferation were reduced by DKK-1. EGFR is involved in WNT3a-induced proliferation via both routes dependent on and independent of the WNT/beta-catenin pathway. These results indicate that WNT3a stimulates proliferation and motility of NIH3T3 fibroblasts via EGFR-mediated ERK pathway activation.  相似文献   

11.
《Cellular signalling》2014,26(10):2161-2166
Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.  相似文献   

12.
The signals used by insulin-like growth factor I (IGF-I) to stimulate proliferation in human mammary epithelial cells have been investigated. IGF-I caused the activation of both ERKs and Akt. Activation of ERKs was slower and more transient than that of Akt. ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, prevented activation of ERKs but not Akt by IGF-I. Inhibition of the EGFR with function-blocking monoclonal antibodies also specifically blocked IGF-I-induced ERK activation. These effects occurred in primary mammary epithelial cells and in two cell lines derived from normal mammary epithelium but not in mammary fibroblasts or IGF-I-responsive breast carcinoma cell lines. Although IGF-I stimulated the proliferation of both normal and carcinoma cell lines, ZD1839 blocked this only in the normal line. ZD1839 had no effect on IGF-I receptor (IGF-IR) autophosphorylation in intact cells. IGF-I-induced ERK activation was insensitive to a broad spectrum matrix-metalloproteinase inhibitor and to CRM-197, an inhibitor of the EGFR ligand heparin-bound epidermal growth factor. EGFR was detectable within IGF-IR immunoprecipitates from normal mammary epithelial cells. Treatment of cells with IGF-I led to an increase in the amount of tyrosine-phosphorylated EGFR within these complexes. ZD1839 had no effect on complex formation but completely abolished their associated EGFR tyrosine phosphorylation. These findings indicate that IGF-I utilizes a novel EGFR-dependent signaling pathway involving the formation of a complex between the IGF-IR and the EGFR to activate the ERK pathway and to stimulate proliferation in normal human mammary epithelial cells. This form of regulation may be lost during malignant progression.  相似文献   

13.
Bromocriptine, acting through the dopamine D2 receptor, provides robust protection against apoptosis induced by oxidative stress in PC12-D2R and immortalized nigral dopamine cells. We now report the characterization of the D2 receptor signaling pathways mediating the cytoprotection. Bromocriptine caused protein kinase B (Akt) activation in PC12-D2R cells and the inhibition of either phosphoinositide (PI) 3-kinase, epidermal growth factor receptor (EGFR), or c-Src eliminated the Akt activation and the cytoprotective effects of bromocriptine against oxidative stress. Co-immunoprecipitation studies showed that the D2 receptor forms a complex with the EGFR and c-Src that was augmented by bromocriptine, suggesting a cross-talk between these proteins in mediating the activation of Akt. EGFR repression by inhibitor or by RNA interference eliminated the activation of Akt by bromocriptine. D2 receptor stimulation by bromocriptine induced c-Src tyrosine 418 phosphorylation and EGFR phosphorylation specifically at tyrosine 845, a known substrate of Src kinase. Furthermore, Src tyrosine kinase inhibitor or dominant negative Src interfered with Akt translocation and phosphorylation. Thus, the predominant signaling cascade mediating cytoprotection by the D2 receptor involves c-Src/EGFR transactivation by D2 receptor, activating PI 3-kinase and Akt. We also found that the agonist pramipexole failed to stimulate activation of Akt in PC12-D2R cells, providing an explanation for our previous observations that, despite efficiently activating G-protein signaling, this agonist had little cytoprotective activity in this experimental system. These results support the hypothesis that specific dopamine agonists stabilize distinct conformations of the D2 receptor that differ in their coupling to G-proteins and to a cytoprotective c-Src/EGFR-mediated PI-3 kinase/Akt pathway.  相似文献   

14.
We have previously shown that muscarinic acetylcholine receptors (mAChRs) enhance SNU-407 colon cancer cell proliferation via the ERK1/2 pathway. Here, we examined the signaling pathways linking mAChR stimulation to ERK1/2 activation and the subsequent proliferation of SNU-407 cells. The inhibition of the epidermal growth factor receptor (EGFR) by AG1478 or protein kinase C (PKC) by GF109203X significantly reduced carbachol-stimulated ERK1/2 activation and cell proliferation. Cotreatment of the cells with AG1478 and GF109203X produced an additive effect on carbachol-stimulated ERK1/2 activation, suggesting that the EGFR and PKC pathways act in parallel. The p90 ribosomal S6 kinases (RSKs) are downstream effectors of ERK1/2 and are known to have important roles in cell proliferation. In SNU-407 cells, carbachol treatment induced RSK activation in an atropine-sensitive manner, and this RSK activation was decreased by the inhibition of either EGFR or PKC. Moreover, the RSK-specific inhibitor BRD7389 almost completely blocked carbachol-stimulated cell proliferation. Together, these data indicate that EGFR and PKC are involved in mAChR-mediated activation of ERK1/2 and RSK and the subsequent proliferation of SNU-407 colon cancer cells.  相似文献   

15.
Gao Z  Yang J  Huang Y  Yu Y 《Mutation research》2005,570(2):175-184
Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.  相似文献   

16.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

17.
Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.  相似文献   

18.
Xu X  Bai L  Chen W  Padilla MT  Liu Y  Kim KC  Belinsky SA  Lin Y 《PloS one》2012,7(3):e33846
Although it is well known that epidermal growth factor receptor (EGFR) is involved in lung cancer progression, whether EGFR contributes to lung epithelial cell transformation is less clear. Mucin 1 (MUC1 in human and Muc1 in animals), a glycoprotein component of airway mucus, is overexpressed in lung tumors; however, its role and underlying mechanisms in early stage lung carcinogenesis is still elusive. This study provides strong evidence demonstrating that EGFR and MUC1 are involved in bronchial epithelial cell transformation. Knockdown of MUC1 expression significantly reduced transformation of immortalized human bronchial epithelial cells induced by benzo[a]pyrene diol epoxide (BPDE), the active form of the cigarette smoke (CS) carcinogen benzo(a)pyrene (BaP)s. BPDE exposure robustly activated a pathway consisting of EGFR, Akt and ERK, and blocking this pathway significantly increased BPDE-induced cell death and inhibited cell transformation. Suppression of MUC1 expression resulted in EGFR destabilization and inhibition of the BPDE-induced activation of Akt and ERK and increase of cytotoxicity. These results strongly suggest an important role for EGFR in BPDE-induced transformation, and substantiate that MUC1 is involved in lung cancer development, at least partly through mediating carcinogen-induced activation of the EGFR-mediated cell survival pathway that facilitates cell transformation.  相似文献   

19.
20.
Ligand-induced activation of G protein-coupled receptors is emerging as an important pathway leading to the activation of certain receptors with intrinsic tyrosine kinase activity, such as the epidermal growth factor receptor (EGFR). Substance P (SP) exerts many effects via activation of its G protein-coupled receptor (neurokinin-1, NK-1). SP participates in acute inflammation and activates key proteins involved in mitogenic pathways, such mitogen-activated protein kinases (MAPKs), stimulating DNA synthesis. We tested the hypothesis that SP-induced MAPK activation and DNA synthesis require activation of the EGFR. In U-373 MG cells, which express functional NK-1, SP induced tyrosine phosphorylation of several proteins including EGFR. SP induced formation of an activated EGFR complex containing the adapter proteins SHC and Grb2, but not c-Src. SP activated the MAPK pathway as shown by increased Erk2 kinase activity. SP induced Erk2 activation, and DNA synthesis was inhibited in cells transfected with a dominant negative EGFR plasmid lacking kinase activity, as well as in cells treated with a specific EGFR inhibitor. In addition, pertussis toxin, an inhibitor of Galpha(iota) protein subunits, prevented SP-induced EGFR transactivation and subsequent DNA synthesis. Our results implicate EGFR as an essential regulator in SP/NK-1-induced activation of the MAPK pathway and cell proliferation in U-373 MG cells, and these events are mediated by a pertussis toxin-sensitive Galpha protein. We suggest that this mechanism by which SP controls cell proliferation is an important pathway in tissue restoration and healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号