首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA methylation and the regulation of aldolase B gene expression   总被引:4,自引:0,他引:4  
DNA methylation was studied as a potential factor for the regulation of tissue-specific and developmentally specific expression of the rat aldolase B gene. We examined cytosine methylation in the HpaII and HhaI recognition sequences in the aldolase B gene in aldolase expressing and nonexpressing tissues and cells. Out of the 15 methyl-sensitive restriction sites examined, the sites in the 3'-half and 3'-flanking regions were found to be heavily methylated in all the tissues or cells, regardless of the level of aldolase B gene expression. However, the methylation pattern in the region immediately upstream and in the 5'-half of the gene exhibited tissue-specificity: the site located about 0.13 kb upstream of the cap site (just next to the CCAAT box), and the sites in the first intron (intron 1) were heavily methylated in nonexpressing cells and tissues (ascites hepatoma AH130 and brain), whereas those in an expressing tissue (liver) were considerably less methylated. These results suggest that cytosine methylation at the specific sites in the 5'-flanking and 5'-half regions of the gene is associated with repression of the gene activity. However, the gene is still substantially methylated in the fetal liver on day 16 of gestation, when it is in a committed state for rapid activation in the period immediately afterwards (Numazaki et al. (1984) Eur. J. Biochem. 152, 165-170). This suggests that demethylation of the methylated cytosine residues in the specific gene region is not necessarily required before activation of the gene during development, but it may occur along with or after the activation.  相似文献   

2.
3.
Genomic levels of DNA methylation undergo widespread alterations in early embryonic development. However, changes in embryonic methylation have proven difficult to study at the level of single-copy genes due to the small amount of tissue available for assay. This study provides the first detailed analysis of the methylation state of a tissue-specific gene through early development and differentiation. Using bisulfite sequencing, we mapped the methylation profile of the tissue-specific mouse skeletal α-actin promoter at all stages of development, from gametes to postimplantation embryos. We show that the α-actin promoter, which is fully methylated in the sperm and essentially unmethylated in the oocyte, undergoes a general demethylation from morula to blastocyst stages, although the blastula is not completely demethylated. Remethylation of the α-actin promoter occurs after implantation in a stochastic pattern, with some molecules being extensively methylated and others sparsely methylated. Moreover, we demonstrate that tissue-specific expression of the skeletal α-actin gene in the adult mouse does not correlate with the methylation state of the promoter, as we find a similar low level of methylation in both expressing and one of the two nonexpressing tissues tested. However, a subset of CpG sites within the skeletal α-actin promoter are preferentially methylated in liver, a nonexpressing tissue.  相似文献   

4.
5.
During germ cell differentiation in mice, the genome undergoes specific epigenetic modifications. These include demethylation of imprinted genes and subsequent establishment of parental allele-specific methylation. The mouse Igf2r gene is an imprinted gene that shows maternal-specific expression. Maternal-specific methylation of differentially methylated region 2 (DMR2) of this gene may be necessary for its maternal-specific expression. Before the allele-specific methylation is established, DMR2 is demethylated in both male and female primordial germ cells (PGCs) by 13.5 days post coitum (dpc), indicating that the demethylation of this region occurs earlier in PGC development. The timing of the demethylation has been, however, unknown. In this study, we attempted to determine the timing of methylation erasure of Igf2r DMR2 in developing PGCs, using transgenic mice expressing green fluorescent protein specifically in the germ line. We purified migrating PGCs from the transgenic mice and examined the methylation status of DMR2. The results show that some CpG sites within DMR2 start demethylation at 9.5 dpc in some migrating PGCs, before the cells colonize genital ridges, and the progression of demethylation is rapid after colonization of the genital ridges. To examine whether the gonadal environment is involved in demethylation, we analyzed the methylation of DMR2 after culturing migrating PGCs in the absence of a gonadal environment. These culture experiments support the idea that a gonadal environment is not required for demethylation of the region in at least a fraction of PGCs.  相似文献   

6.
DNA methylation and expression of HLA-DR alpha.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

7.
8.
9.
10.
We have analyzed methylation of the rat albumin and alpha-fetoprotein (AFP) genes by hydridizing labeled cDNA clones to HpaII and MspI digests of DNA from different stages of development. These CCGG-cutting enzymes distinguish 5-methylcystosine in mCCGG (sensitive to HpaII) and CmCGG (sensitive to MspI). In the liver, the albumin gene is heavily methylated at 18 days gestation and uniformly demethylated in the adult. The AFP gene is also heavily methylated at 18 days gestation, and develops demethylated regions at the 3' half of the gene in the adult. These methylation changes are not observed in other embryonic or adult tissues. We also evaluated expression of these genes by measuring their corresponding mRNAs. The albumin gene is actively transcribed in 18-day fetal liver, when it is heavily methylated, as well as in adult liver, when it is unmethylated. In contrast, the AFP gene is transcribed only in fetal liver, even though it is less methylated in adult liver. These findings suggest that specific methylation changes are associated with changes in gene expression, but that this association is not adequately described by the simple hypothesis that methylation turns genes off.  相似文献   

11.
Mbu-1 (Csrnp-3) is a mouse gene that was identified in our previous study as showing highly restricted expression to the central nervous system. In this study, to elucidate the regulatory mechanism for tissue specificity of the gene, epigenetic approaches that identify the profiles of CpG methylation, as well as histone modifications at the promoter region were conducted. Methylation-specific PCR revealed that the CpG sites in brain tissues from embryo to adult stages showed virtually no methylation (0.052–0.67%). Lung (9.0%) and pancreas (3.0%) also showed lower levels. Other tissues such as liver, kidney, and heart showed much higher methylation levels ranging from approximately 39-93%. Treatment of 5-aza-2′-deoxycytidine (5-Aza-dC) significantly decreased promoter methylation, reactivating Mbu-1 expression in NG108-15 and Neuro-2a neuronal cells. Chromatin immunoprecipitation assay revealed that 5-Aza-dC decreased levels of acetylated H3K9 and methylated H3K4, and increased methylated H3K9. This result indicates that CpG methylation converses with histone modifications in an opposing sense of regulating Mbu-1 expression.  相似文献   

12.
13.
14.
15.
One of the "signature" phenotypes of highly malignant, poorly differentiated tumors, including hepatomas, is their remarkable propensity to utilize glucose at a much higher rate than normal cells, a property frequently dependent on the marked overexpression of type II hexokinase (HKII). As the expression of the gene for this enzyme is nearly silent in liver tissue, we tested the possibility that DNA methylation/demethylation events may be involved in its regulation. Initial studies employing methylation restriction endonuclease analysis provided evidence for differential methylation patterns for the HKII gene in normal hepatocytes and hepatoma cells, the latter represented by a highly glycolytic model cell line (AS-30D). Subsequently, sequencing following sodium bisulfite treatment revealed 18 methylated CpG sites within a CpG island (-350 to +781 bp) in the hepatocyte gene but none in that of the hepatoma. In addition, treatment of a hepatocyte cell line with the DNA methyltransferase inhibitors, 5'-azacytidine and 5'-aza-2'-deoxycytidine, activated basal expression levels of HKII mRNA and protein. Finally, stably transfecting the hepatocyte cell line with DNA demethylase also resulted in activating the basal expression levels of HKII mRNA and protein. These novel observations indicate that one of the initial events in activating the HKII gene during either transformation or tumor progression may reside at the epigenetic level.  相似文献   

16.
The rat hepatic S14 gene has served as a model of thyroid hormone regulation of gene expression. Earlier studies of the S14-containing chromatin region demonstrated that a cytosine residue at position 625 (C-625) in the 3' untranslated exon was hypermethylated in hepatic DNA derived from hypothyroid animals. This observation was consistent with the markedly reduced level of expression of the S14 gene in these rats. The current studies have extended these observations to groups of rats in various thyroidal states. By using the restriction enzyme Hhal, the percent demethylation of this site was quantitated (hypothyroid, 9.3%; euthyroid, 19.2%; hyperthyroid, 66.6%). Moreover, the level of methylation was shown to be reversible as the thyroidal state was altered. Our data also indicate that these changes are probably independent of de novo DNA synthesis. Kinetic studies of the demethylation of this cytosine residue after T3 administration showed no change for at least 1 day and maximal change after about 4 days. This contrasts with the significant rise in S14 mRNA evident within 30 min and suggests that demethylation plays no role in the acute induction of this gene by T3. Carbohydrate feeding, another stimulus of S14 expression, similarly caused the demethylation of this cytosine residue. Earlier studies had demonstrated that mRNA S14 expression was not detectable in rat pups before about 20 days of age and continued to rise through the first year of life. Consistent with those findings, S-14 C-625 was fully methylated up to 15 days of age. Progressive demethylation then occurred up to 12 months of age. These results indicate that increased demethylation of a specific site in the 3' untranslated region of the S14 gene, possibly resulting from augmented excision repair processes, is correlated with increased expression of the gene.  相似文献   

17.
Sachan M  Raman R 《Gene》2006,380(2):151-158
We have studied the dynamics of de novo CpG methylation in the regulatory region of one of the homeobox gene HoxB5 during mouse development by sodium bisulfite sequencing. Methylation pattern was examined at embryonic day 18.5 and adult in kidney and spleen while in the liver the same exercise has been done in 11.5 dpc, 18.5 dpc, 5 dpp and in adult. In the liver at 11.5 dpc, all the 47 contiguous sites (including a CpG island from 2035 to 2330 bp) at 5' regulatory region of HoxB5 were unmethylated. Random methylation commences from 18.5 dpc and continues in 5 dpp and in the adult. In the kidney at 18.5 dpc, 26 CpGs were examined (excluding the CpG island region) and all of them were unmethylated but the fetal spleen had at least a few sites considerably methylated. In the adult there was a low level methylation in the kidney, on the other hand, in the spleen, all the CpGs were methylated except a few sites and certain sites were totally methylated. Thus in the adult, the level of methylation was much higher than in the fetal stage. On the other hand semi-quantitative RT-PCR revealed that the extent of expression of HoxB5 was higher in embryonic stages than in the adult. Thus HoxB5 is a good paradigm to support that the developmental methylation of HoxB5 and its expression pattern show an inverse correlation.  相似文献   

18.
The methylation pattern of the germ line-transmitted Moloney leukemia proviral genome was analyzed in DNA of sperm, of day-12 and day-17 embryos, and of adult mice from six different Mov substrains. At day 12 of gestation, all 50 testable CpG sites in the individual viral genomes as well as sites in flanking host sequences were highly methylated. Some sites were unmethylated in sperm, indicating de novo methylation of unique DNA sequences during normal mouse development. At subsequent stages of development, specific CpG sites which were localized exclusively in the 5' and 3' enhancer regions of the long terminal repeat became progressively demethylated in all six proviruses. The extent of enhancer demethylation, however, was tissue specific and strongly affected by the chromosomal position of the respective proviral genome. This position-dependent demethylation of enhancer sequences was not accompanied by a similar change within the flanking host sequences, which remained virtually unchanged. Our results indicate that viral enhancer sequences, but not other sequences in the M-MuLV genome, may have an intrinsic ability to interact with cellular proteins, which can perturb the interaction of the methylase with DNA. Demethylation of enhancer sequences is not sufficient for gene expression but may be a necessary event which enables the enhancer to respond to developmental signals which ultimately lead to gene activation.  相似文献   

19.
In vitro methylation at CG dinucleotides (CpGs) in a transfecting plasmid usually greatly inhibits gene expression in mammalian cells. However, we found that in vitro methylation of all CpGs in episomal or non-episomal plasmids containing the SV40 early promoter/enhancer (SV40 Pr/E) driving expression of an antibiotic-resistance gene decreased the formation of antibiotic-resistant colonies by only approximately 30-45% upon stable transfection of HeLa cells. In contrast, when expression of the antibiotic-resistance gene was driven by the Rous sarcoma virus long terminal repeat or the herpes simplex virus thymidine kinase promoter, this methylation decreased the yield of antibiotic-resistant HeLa transfectant colonies approximately 100-fold. The low sensitivity of the SV40 Pr/E to silencing by in vitro methylation was probably due to demethylation upon stable transfection. This demethylation may be targeted to the promoter and extend into the gene. By genomic sequencing, we showed that four out of six of the transfected SV40 Pr/E's adjacent Sp1 sites were hotspots for demethylation in the HeLa transfectants. High frequency demethylation at Sp1 sites was unexpected for a non-embryonal cell line and suggests that DNA demethylation targeted to certain aberrantly methylated regions may function as a repair system for epigenetic mistakes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号