首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the role of germline-specific chromosomal determinants of development in the mouse. Studies were carried out using aggregation chimaeras between androgenetic----fertilized embryos and compared with similar parthenogenetic----fertilized chimaeras. Several adult chimaeras were found with parthenogenetic cells but none were found with androgenetic cells. Analysis of chimaeras at mid-gestation showed that parthenogenetic cells were detected in the embryo and yolk sac but that androgenetic cells were found only in the trophoblast and yolk sac and not in the embryo. The contribution of parthenogenetic cells to the embryo and yolk sac was increased by aggregating 2-cell parthenogenetic and 4-cell fertilized embryos but the contribution of parthenogenetic cells in extraembryonic tissues remained negligible even after aggregation of 4-cell parthenogenetic and 2-cell fertilized embryos. Furthermore, parthenogenetic cells were primarily found in the yolk sac mesoderm and not in the yolk sac endoderm. These results suggest that maternal chromosomes in parthenogenetic cells permit their participation in the primitive ectoderm lineage but these cells are presumably eliminated by selective pressure or autonomous cell lethality from the primitive endoderm and trophectoderm lineages. Conversely paternal chromosomes in androgenetic cells confer opposite properties since the embryonic cells can be detected in the trophoblast and the yolk sac but not in the embryos, presumably because they are eliminated from the primitive ectoderm lineage. The spatial distribution of cells with different parental chromosomes may occur partly because of differential expression of some genes, such as proto-oncogenes, and partly due to their ability to respond to a variety of diffusible growth factors.  相似文献   

2.
Even though pure parthenogenetic mouse embryos die shortly after implantation, their cells are capable of participating in normal development of chimaeras when aggregated with fertilized embryos. Here we present data on parthenogenetic contribution to the oocyte populations measured by progeny tests in female chimaeras, and on distribution of parthenogenetic cells among the different organs by GPI typing. Systematic uneven distribution was detected. The highest level of participation was registered in the tissues of permanent cells (e.g. up to 63% in female germline). On the other hand, parthenogenetic cells were absent in several tissues that have extensive capacity for postnatal growth or selfrenewal. This finding suggests that uneven selective processes operate against parthenogenetic cells within certain differentiation pathways during fetal and postnatal life, as has already been observed in the development of extraembryonal membranes. It is likely that more than one mechanism is responsible for these selections. Parthenogenetic cells may start to differentiate in all cell lineages, but they are not able to react normally at certain points in the developmental pathway, for example to induction signals and, therefore, the cells fail to complete the normal processes of development, or to the proliferation requirement so that the fertilized counterpart gradually takes over the cell lineage. Paternally derived gene(s) might have a unique role in the development of tissues lacking parthenogenetic contribution.  相似文献   

3.
The fate of parthenogenetic cells was investigated during development of fetal and early postnatal chimeras. On day 13 of embryonic development, considerable contribution of parthenogenetic cells was observed in all tissues of chimeric embryos, although selection against parthenogenetic cells seemed to start before day 13. Between days 13 and 15 of development, parthenogenetic cells came under severe selective pressure, which was most striking in tongue. The disappearance of parthenogenetic cells from tongue coincided with the beginning of myoblast fusion in this tissue. Severe selection against parthenogenetic cells was also observed in pancreas and liver, although in the latter, parthenogenetic cells were eliminated later than in skeletal muscle or pancreas. In other tissues, parthenogenetic cells may persist and participate to a considerable extent throughout the gestation period and beyond, although a significant decrease was observed in all tissues. Parthenogenetic in equilibrium fertilized chimeras were significantly smaller than their non-chimeric littermates at all developmental stages. These results suggest that the absence of paternal chromosomes is largely incompatible with the maintenance of specific differentiated cell types. Furthermore, paternally derived genes seem to be involved in the regulation of proliferation of all cell types, as indicated by the drastic growth decceleration of parthenogenetic in equilibrium fertilized chimeras and the overall decrease of parthenogenetic cells during fetal development. Chromosomal imprinting may have a role in maintaining a balance between cell growth and differentiation during embryonic development. The major exception to the selective elimination of parthenogenetic cells appear to be the germ cells; viable offspring derived from parthenogenetic oocytes were detected, sometimes at a high frequency in litters of female parthenogenetic in equilibrium fertilized chimeras.  相似文献   

4.
This study was undertaken to develop a new technique to produce identical offspring by aggregating a quarter or eighth embryo with a parthenogenetically activated egg in the mouse. One or two blastomeres from 8-cell embryos were aggregated with a parthenogenetic 4-cell egg from which one or two blastomeres had been removed. After micromanipulation and culture for 2 d in vitro, the morphologically normal blastocysts were transferred to the uterus of recipient females. The success rate in micromanipulation of eggs was 93 to 100%: aggregation of blastomeres occured about 60% of the time and the proportion of live young after transfer of aggregated eggs was 11 to 33% for the quarter and 2 to 24% for the eighth egg. The proportion of chimaeras as judged by coat color was 10% for the quarter and 20% for the eighth egg. However, GPI-1 analysis and progeny testing could not detect a parthenogenetic contribution in all offspring. The mean number of young obtained from one embryo was 1.7 for the quarter and 1.6 for the eighth embryo. The maximal number of young obtained from splitting one 8-cell embryo into quarters was three and into eighths was four. The mice of each set derived from a single embryo were of the same sex. Our study clearly demonstrates that the parthenogenone can assist development of the quarter and eighth mouse embryo to term. The proportion of chimaeras is low compared with that obtained when two fertilied eggs are combined.  相似文献   

5.
In animals, some general features of centrosome dynamics and inheritance have been widely recognized. The most acknowledged model assigns to sperm the contribution of a centriole to the fertilized egg, which in turn provides the pericentriolar materials, including gamma-tubulin, recruiting them from the cytoplasm: the main zygote microtubule organizing center (MTOC) is thus reconstituted to organize first the spermaster and then the full first embryonic spindle. Obviously the model cannot apply to parthenogenetic systems, which actually rely on egg components alone. In stick insects of the Bacillus genus, the spindle of both somatic and germ cells is clearly anastral, therefore we have been investigating their centrosome in sexual and parthenogenetic taxa by analyzing its component dynamics and transmission through the use of monoclonal beta- and gamma-tubulin antibodies and transmission electron microscopy (TEM). It has been shown that in sexually reproducing species the spermatozoon does not contribute the centriole, so that the egg wholly provides the MTOC and the ensuing anastral spindle of the embryo: MTs appear to derive from pronuclear chromatin surroundings and no asters are observed. The parthenogenetic embryo development is the same as the sexual one if syngamy is excepted. The parthenogenetic mechanism realized by these panoistic insects appears to differ from that observed in the meroistic hymenopteran and drosophilid species, where the embryo spindle derives from asters formed in the egg cortex. In stick insects, the lack of sperm contribution to embryonic centrosome appears to be a major trait accounting for the widespread occurrence of facultative and obligate parthenogenesis within the order.  相似文献   

6.
Studies were made on the contribution of haploid-derived parthenogenetic cells to haploid parthenogenetic ? fertilized chimeric embryos on day 9 and 10 of pregnancy. In most cases, the contribution of haploid-derived parthenogenetic cells to embryonic tissues was higher than that to extraembryonic tissues. The contribution of haploid-derived cells to embryonic tissues of some chimeras was more than 90%. Chromosomal analysis showed that actively dividing cells in most chimeric embryos contained about 40 chromosomes, indicating that they were diploidized, as haploid parthenogenetic blastocysts have about 20 chromosomes. Results suggested that haploid-derived parthehogenetic cells in chimeric embryos diploidized spontaneously after the blastocyst stage. These cells were capable of differentiating into most cell types of embryonic tissues, but scarcely differentiated into extraembryonic tissues of day 9 embryos. The fate of haploid-derived parthenogenetic cells during postimplantational development was similar to that of diploid parthenogenetic cells that had been diploidized experimentally in the one-cell stage.  相似文献   

7.
The developmental capability of haploid parthenogenetic cells was investigated by studies on haploid parthenogenetic in equilibrium fertilized mouse chimeras. Two chimeras were born. One female chimera was smaller at birth and grew slower than its littermates. The distribution of haploid-derived cells in the chimeras was analyzed 11 months after their birth. Cells derived from haploid embryos were found only in the brain, eyes, pigment cells in hair follicles, and spleen, in which they constituted 30%, 20%, 10%, and less than 5%, respectively, of the cells. The correlation between the parthenogenetic contribution to the brain and growth retardation is discussed. All of the cells examined in these chimeric organs (brain and eyes) contained a diploid amount of DNA, suggesting that diploidization of the haploid parthenogenetic cells occurred during development. Possibly, the haploid state is not sufficient for cell growth, even in chimeras with fertilized embryos.  相似文献   

8.
Summary A study has been made of the histochemical composition of the murine cumulus—oocyte complex and zona pellucida following treatment of immature females with exogenous gonadotrophins. Selected developmental stages were studied in detail, namely (i) the ovulated and unfertilized egg, (ii) the fertilized oocyte and (iii) the preimplantation embryo. In addition, the histochemical features observed in normal fertilized embryos have been compared with those of haploid and diploid parthenogenetic embryos at comparable stages following activation. Shortly after fertilization, glycosaminoglycans, which form a major component of the extracellular matrix surrounding the cumulus cells, become incorporated into the zona pellucida of the fertilized egg. In oocytes with few or no attendant cumulus cells, there appeared to be a diminished uptake of glycosaminoglycans and a reduced intensity of the zona staining reaction to Alcian Blue. In these oocytes, uptake of glycosaminoglycans appeared to be from the secretions lining the oviduct. There was little incorporation of the glycosaminoglycans from the extra-cellular matrix of the surrounding cumulus cells into the zona pellucida in unfertilized or parthenogenetic eggs despite the activation stimulus. After fertilization or activation, the zona pellucida became increasingly PAS-positive. Enzymic studies clearly indicate that the composition of the zona pellucida of the early embryo is histochemically different from the zona that surrounds the oocyte in the preovulatory follicle. These findings are discussed in relation to the decreased viability of embryos from oocytes which have been ovulated.The death of Mrs Carol Grainge is sadly recorded.  相似文献   

9.
Systematic elimination of parthenogenetic cells in mouse chimeras   总被引:1,自引:0,他引:1  
The developmental potential of primitive ectoderm cells lacking paternal chromosomes was investigated by examining the distribution of parthenogenetic cells in chimeras. Using GPI-1 allozymes as marker, parthenogenetic cells were detected in most organs and tissues in adult chimeras. However, these cells were under severe selective pressure compared with cells from normal fertilized embryos. In the majority of chimeras, parthenogenetic cells in individual animals were observed in a limited number of tissues and organs and, even in these instances, their contribution was substantially reduced. Nevertheless, parthenogenetic cells were detected more consistently in some organs, especially the brain, heart, kidney and spleen. In contrast, there was apparently a systematic selection against parthenogenetic cells in some tissues, most notably in skeletal muscle, liver and pancreas. These results suggest that paternally derived genes are probably required not only for the development of extraembryonic structures but also for subsequent development of embryonic tissues derived from the primitive ectoderm lineage.  相似文献   

10.
An attempt has been made to improve the early post-implantation development potential of diploid parthenogenetic mouse embryos by transferring parthenogenetic blastocysts to one uterine horn of a pseudopregnant recipient and a similar number of fertilized embryos to the contralateral horn. In control studies, diploid parthenogenetic embryos were transferred to both uterine horns of appropriate recipients. Unfortunately no obvious advantage appeared to be gained by carrying out the former manoeuvre. A significant improvement in the development potential of the parthenogenones could have indicated that their poor post-implantation survival might have been associated with a deficiency, possibly of hormonal origin, in the functioning of their decidual reaction. However, sufficient somite-containing parthenogenetic embryos were obtained in this study to allow a comparison to be made between them and fertilized embryos that were morphologically at a comparable stage of development. The parthenogenones were found to have a markedly smaller crown-rump length than their fertilized counterparts. A high proportion of both the parthenogenetic and fertilized embryos were subsequently fixed and appropriately stained in order to localize alkaline phosphatase activity. The analysis of this material clearly demonstrated that parthenogenetic mouse embryos are in fact capable of producing primordial germ cells. The latter were recognized by their morphology, histochemical staining appearance, and characteristic location, being found in the early 'turned' embryos within the dorsal mesentery in close proximity to the developing gut tube, and in the more advanced limb-bud stage embryos within the gonadal ridges.  相似文献   

11.
In sexually reproducing species, fertilization brings together in the zygote the genomes of the female and male gametes. In several animal species, female gametes are able to initiate embryogenesis in the absence of fertilization, a process referred to as parthenogenesis. Parthenogenesis has been engineered in mice by tampering with expression of loci under epigenetic controls [1]. In plants, embryo development in the absence of fertilization has been reported in cases in which meiosis is bypassed leading to apomictic development, and parthenogenetic development from a reduced egg cell has been only reported in rare accidental cases [2]. We report that single mutations in the gene MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) are able to initiate parthenogenetic development of the embryo in Arabidopsis thaliana from eggs cells produced by meiosis. The WD40 repeat protein MSI1 is part of the evolutionarily conserved Polycomb group (PcG) chromatin-remodeling complexes [3] and is homologous to the Retinoblastoma binding proteins P55 in Drosophila and RbAp48 in mammals [4]. Nonviable haploid parthenogenetic msi1 embryos express molecular markers and polarity similar to diploid wild-type (wt) embryos produced by fertilization, indicating a maternal contribution to early patterning of the Arabidopsis embryo.  相似文献   

12.
Chimeras were made from parthenogenetic and fertilized cleavage-stage mouse embryos. The perinatal mortality was high. The parthenogenetic contributions to different tissues at birth ranged from 0 to 50%. No selection of parthenogenetic cells was observed in the pigmentation of the coat, but this does not exclude that such selection could act in other tissues. The weight of chimeras at birth negatively correlated to the average contribution of the parthenogenetic part. The growth rate of chimeras was lower than that of nonchimeric animals. The data presented demonstrated that, although parthenogenetic cells are not cell lethals and they can participate to some degree in normal development of most tissues, their extensive presence reduces the viability of chimeras and retards the postnatal development.  相似文献   

13.
小鼠孤雌胚胎干细胞集落的建立   总被引:2,自引:0,他引:2  
ESTABLISHMENTOFSTEMCELLCOLONIESFROMPARTHENOGENETICALLYDERIVEDBLASTOCYSTSOFMOUSE小鼠孤雌胚胎干细胞集落的建立KeywordsMouse,Parthenogeneticem...  相似文献   

14.
The effect of transforming growth factor alpha (TGF alpha) on the development of diploid parthenogenetic mouse embryos (CBA x C57BL/6)F1 was studied. The embryos were in vitro treated with the TGF alpha at the stage of morula. Upon reaching the blastocyst stage, each embryo was implanted into uterus of a pseudopregnant female. At a dose of 5 ng/ml, the TGF alpha was found to improve development of parthenogenetic embryos before implantation, increase significantly the number of developing blastocysts, and promote embryo implantation into uterus. After treatment with TGF alpha at a dose of 10 ng/ml, 4% of parthenogenetic embryos reached the stage of 30-45 somites and had forelimb and hindlimb buds; the embryo size from vertex to sacrum was 2.0 to 3.8 mm. A well-developed placenta was observed in 6% of TGF alpha-treated parthenogenetic embryos that reached the somite stages. In the parthenogenetic embryos with the most prominent development (42-45 somites) treated with 10 ng/ml of TGF alpha, the placental diameter was 4.0 to 4.2 mm on day 12 of gestation, which is close to the placental size of the normal (fertilized) 11-day-old mouse embryos. Our results suggest that endogenous TGF alpha can modulate the effects of genomic imprinting significantly improving formation of trophoblast derivatives and promoting longer postimplantation development of parthenogenetic embryos.  相似文献   

15.
16.
Androgenetic embryos are useful model for investigating the contribution of the paternal genome to embryonic development. Little work has been done with androgenetic embryo production in domestic animals. The aim of this study was the production of diploid androgenetic sheep embryos. In vitro matured sheep oocytes were enucleated and fertilized in vitro; parthenogenetic and normally fertilized embryos were also produced as a control. Fifteen hours after in vitro fertilization (IVF), presumptive zygotes were centrifuged and scored for the number of pronucleus. IVF, parthenogenetic, and androgenetic embryos (haploid, diploid, and triploid) were cultured in SOFaa medium with bovine serum albumin (BSA). The proportion of oocytes with polyspermic fertilization increased linearly with increasing sperm concentration. After IVF, there was no significant difference in early cleavage and morula formation rates between the groups, while there was a significant difference on blastocyst development between IVF, parthenogenetic, and androgenetic embryos, the last ones displaying poor developmental potential (IVF, parthenogenetic, and haploid, diploid, and triploid androgenetic embryos: 43%, 38%, 0%, 2%, and 2%, respectively). In order to boost androgenetic embryonic development, we produced diploid androgenetic embryos through pronuclear transfer. Single pronuclei were aspirated with a bevelled pipette from haploid or diploid embryos and transferred into the perivitelline space of other haploid embryos, and the zygotes were reconstructed by electrofusion. Fusion rates approached 100%. Pronuclear transfer significantly increased blastocyst development (IVF, parthenogenetic, androgenetic: Diploid into Haploid, and Haploid into Haploid: 42%, 42%, 19%, and 3%, respectively); intriguingly, the Haploid + Diploid group showed the highest development to blastocyst stage. The main findings of our study are: (1) sheep androgenetic embryos display poor developmental ability compared with IVF and parthenogenetic embryos; (2) diploid androgenetic embryos produced by pronuclear exchange developed in higher proportion to blastocyst stage, particularly in the Diploid-Haploid group. In conclusion, pronuclear transfer is an effective method to produce sheep androgenetic blastocysts.  相似文献   

17.
Cloned mouse embryos display a marked preference for glucose-containing culture medium, with enhanced development to the blastocyst stage in glucose-containing medium attributable mainly to an early beneficial effect during the first cell cycle. This early beneficial effect of glucose is not displayed by parthenogenetic, fertilized, or tetraploid nuclear transfer control embryos, indicating that it is specific to diploid clones. Precocious localization of the glucose transporter SLC2A1 to the cell surface, as well as increased expression of glucose transporters and increased uptake of glucose at the one- and two-cell stages, is also seen in cloned embryos. To examine the role of glucose in early cloned embryo development, we examined glucose metabolism and associated metabolites, as well as mitochondrial ultrastructure, distribution, and number. Clones prepared with cumulus cell nuclei displayed significantly enhanced glucose metabolism at the two-cell stage relative to parthenogenetic controls. Despite the increase in metabolism, ATP content was reduced in clones relative to parthenotes and fertilized controls. Clones at both stages displayed elevated concentrations of glycogen compared with parthenogenetic controls. There was no difference in the number of mitochondria, but clone mitochondria displayed ultrastructural alterations. Interestingly, glucose availability positively affected mitochondrial structure and localization. We conclude that cloned embryos may be severely compromised in terms of ATP-dependent processes during the first two cell cycles and that glucose may exert its early beneficial effects via positive effects on the mitochondria.  相似文献   

18.
 The developmental potential of parthenogenetic embryonic stem (P-ES) cells was studied in teratomas and mouse chimaeras. Teratomas derived from P-ES cells contained a mixture of tissue types with variable proportions of specific tissues. Three of the eight P-ES cell lines analysed showed high proportions of striated muscle in teratomas, similar to teratomas from normal embryos or ES cell lines derived from fertilised embryos (F-ES cells). Our study also revealed that one P-ES cell line showed little lineage restriction in injection chimaeras. Descendants of the P-ES cells contributed to most tissues of chimaeric fetuses in patterns similar to F-ES cells. Normal colonisation of muscle, liver and pancreas was found in adult chimaeras. P-ES cells also showed similar haematopoietic differentiation and maturation as F-ES cells. However, extensive P-ES cell contribution was associated with a reduction in body size. These findings suggest that, while P-ES cells display more extensive developmental potential than the cells of parthenogenetic embryos from which they were derived, they only retained properties related to the presence of the maternal genome. To elucidate the molecular basis for the lack of lineage restriction during in vivo differentiation, the expression of four imprinted genes, H19, Igf2r, Igf2 and Snrpn was compared among five P-ES and two F-ES cell lines. Expression levels of these genes varied among the different ES cell lines, both in undifferentiated ES cells and in embryoid bodies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号