首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raver2 was identified as a novel member of the hnRNP family based on sequence homology within three RNA recognition motifs and its general domain organization reminiscent of the previously described raver1 protein. Like raver1, raver2 contains two putative nuclear localization signals and a potential nuclear export sequence, and also displays nucleo-cytoplasmic shuttling in a heterokaryon assay. In glia cells and neurons, raver2 localizes to the nucleus. Moreover, the protein interacts with polypyrimidine tract binding protein (PTB) suggesting that it may participate in PTB-mediated nuclear functions. In contrast to ubiquitously expressed raver1, raver2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is essentially restricted to brain, lung, and kidney in the adult mouse.  相似文献   

2.
The Janus kinase family consists of four members: JAK-1, -2, -3 and TYK-2. While JAK-2 and JAK-3 have been well characterized biochemically, there is little data on TYK-2. Recent work suggests that TYK-2 may play a critical role in the development of a number of inflammatory processes. We have carried out a series of biochemical studies to better understand TYK-2 enzymology and its inhibition profile, in particular how the TYK-2 phosphorylated forms differ from each other and from the other JAK family members. We have expressed and purified milligram quantities of the TYK-2 kinase domain (KD) to high purity and developed a method to separate the non-, mono- (pY1054) and di-phosphorylated forms of the enzyme. Kinetic studies (kcat(app)/Km(app)) indicated that phosphorylation of the TYK-2-KD (pY1054) increased the catalytic efficiency 4.4-fold compared to its non-phosphorylated form, while further phosphorylation to generate the di-phosphorylated enzyme imparted no further increase in activity. These results are in contrast to those obtained with the JAK-2-KD and JAK-3-KD, where little or no increase in activity occurred upon mono-phosphorylation, while di-phosphorylation resulted in a 5.1-fold increase in activity for the JAK-2-KD. Moreover, ATP-competitive inhibitors demonstrated 10-30-fold shifts in potency (Ki(app)) as a result of the TYK-2-KD phosphorylation state, while the shifts for JAK-3-KD were only 2-3-fold and showed little or no change for JAK-2-KD. Thus, the phosphorlyation state imparted differential effects on both activity and inhibition within the JAK family of kinases.  相似文献   

3.
4.
5.
The phosphatidylethanolamine binding proteins (pebps) are an evolutionarily conserved family of proteins recently implicated in mitogen-activated protein (MAP) kinase pathway regulation, where they are called raf kinase inhibitory proteins. Here, we describe the cloning, cellular localization, and partial characterization of a new member, pebp-2, with potential roles in male fertility. Expression data show that pebp-2 is a testis-specific 21-kDa protein found within late meiotic and haploid germ cells in a stage-specific pattern that is temporally distinct from that of pebp-1. Sequence analyses suggest that pebp-2 forms a distinct subset of the pebp family within mammals. Database analyses revealed the existence of a third subset. Analysis suggests that the specificity/regulation of the distinct pebps subsets is likely to be determined by the amino terminal 40 amino acids or the 3' untranslated region, where the majority of sequence differences occur. Protein homology modeling suggests that pebp-2 protein is, however, topologically similar to other pebps and composed of Greek key fold motifs, a dominant beta-sheet formed from five anti-parallel beta strands forming a shallow groove associated with a putative phosphatidylethanolamine binding site. The pebp-2 gene is intronless and data suggest that it is a retrogene derived from pebp-1. Further, pebp-2 colocalizes with members of the MAP kinase pathway in late spermatocytes and spermatids and on the midpiece of epididymal sperm. These data raise the possibility that pebp-2 is a novel participant in the MAP kinase signaling pathway, with a role in spermatogenesis or posttesticular sperm maturation.  相似文献   

6.
MACROH2A2, a new member of the MARCOH2A core histone family   总被引:1,自引:0,他引:1  
MACROH2As are core histones that have a unique hybrid structure consisting of an amino-terminal domain that closely resembles a full-length histone H2A followed by a large nonhistone region. The human MACROH2A1 gene, on chromosome 5, encodes two MACROH2A subtypes, MACROH2A1.1 and MACROH2A1.2, produced by alternate splicing. Here we report the identification of MACROH2A2, a new MACROH2A subtype encoded by a separate gene on human chromosome 10, MACROH2A2. The amino acid sequence of human MACROH2A2 is 68% identical to human MACROH2A1.2. We show by immunofluorescence on mouse tissue sections that MACROH2A2, like MACROH2A1.2, is concentrated in the inactive X chromosome. However, MACROH2A2 has a very different pattern of expression in the cell types present in the liver and kidney. When MACROH2A2 and MACROH2A1.2 are present in the same nucleus, they have a similar, though nonidentical, pattern of localization, with both subtypes present in the inactive X chromosome. Our results suggest a developmental role for MACROH2A subtypes.  相似文献   

7.
A cDNA clone encoding tenascin-W, a novel member of the tenascin family, was isolated from a 20- to 28-h postfertilization (hpf) zebrafish cDNA library on the basis of the conserved epidermal growth factor-like domains represented in all tenascin molecules. An open reading frame of 2796 base pairs encodes a mature protein consisting of heptad repeats, a cysteine-rich amino terminal region, 3.5 epidermal growth factor-like repeats, five fibronectin type III homologous repeats, and a domain homologous to fibrinogen. These domains are the typical modular elements of molecules of the tenascin family. Sequence comparison demonstrated that TN-W shares homologies with the members of the tenascin family but is not a species homolog of any identified tenascin. The expression pattern of tn-w was analyzed by in situ hybridization in 1-day-old embryos, in 3-day-old larvae, and in juvenile zebrafish. At 24–25 hpf, tn-w mRNA was expressed in the lateral plate mesoderm, most conspicuously in the presumptive sclerotome. Migrating cells of sclerotomal and neural crest origins also showed high levels of expression. At 3 days, expression by sclerotomal and neural crest cells continued to be observed while expression in the somitic mesoderm was decreased. In juvenile fish, tn-w was expressed weakly by cells in the myosepta and, more strongly, by presumably nonneuronal cells in the dorsal root ganglia. In these tissues and at the same developmental stages, the expression of tn-w partially overlapped with the distribution of tn-c mRNA. In addition, tn-c was expressed in the central nervous system (CNS) and in the axial mesoderm, neither of which expressed tn-w at any of the age stages examined. The expression pattern of tn-w suggests an involvement in neural crest and sclerotome cell migration and in the formation of the skeleton. Similar and possibly overlapping functions could also be performed by tn-c, which appears to have additional functions during the development of the CNS. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 1–16, 1998  相似文献   

8.
DNA replication and genotoxic stresses activate various checkpoint-associated protein kinases, and checkpoint dysfunction often leads to cell lethality. Here, we have identified new members of the mammalian NIMA family of kinases, termed Nek11L and Nek11S (NIMA-related kinase 11 Long and Short isoform) as novel DNA replication/damage stresses-responsive kinases. Molecular cloning and biochemical studies showed that the catalytic domain of Nek11 is most similar to Nek4 and Nek3, and substrate specificity of Nek11L is distinguishable from those of NIMA and Nek2. The expression of nek11L mRNA increased through S to G(2)/M phase, and subcellular localization of Nek11 protein altered between interphase and prometaphase, suggesting multiple roles of Nek11. We found an activation of Nek11 kinase activity when cells were treated with various DNA-damaging agents and replication inhibitors, and this activation of Nek11 was suppressed by caffeine in HeLaS3 cells. The transient expression of wild-type Nek11L enhanced the aphidicolin-induced S-phase arrest, whereas the aphidicolin-induced S-phase arrest was reduced in the U2OS cell lines expressing kinase-negative Nek11L (K61R), and these cells were more sensitive to aphidicolin-induced cell lethality. Collectively, these results suggest that Nek11 has a role in the S-phase checkpoint downstream of the caffeine-sensitive pathway.  相似文献   

9.
10.
RGL2 [RalGDS (Ral guanine nucleotide dissociation stimulator)-like 2] is a member of the RalGDS family that we have previously isolated and characterized as a potential effector for Ras and the Ras analogue Rap1b. The protein shares 89% sequence identity with its mouse orthologue Rlf (RalGDS-like factor). In the present study we further characterized the G-protein-binding features of RGL2 and also demonstrated that RGL2 has guanine-nucleotide-exchange activity toward the small GTPase RalA. We found that RGL2/Rlf properties are well conserved between human and mouse species. Both RGL2 and Rlf have a putative PKA (protein kinase A) phosphorylation site at the C-terminal of the domain that regulates the interaction with small GTPases. We demonstrated that RGL2 is phosphorylated by PKA and phosphorylation reduces the ability of RGL2 to bind H-Ras. As RGL2 and Rlf are unique in the RalGDS family in having a PKA site in the Ras-binding domain, the results of the present study indicate that Ras may distinguish between the different RalGDS family members by their phosphorylation by PKA.  相似文献   

11.
Rhodococcus equi is a facultative intracellular bacterium which can cause bronchopneumonia in foals and AIDS patients. In this report we show that the ORF13-protein coded by the virulence associated plasmid of R. equi is clearly homologous to VapE. Nucleotide sequence analysis revealed frame shift mutations that shorten the sequence of the ORF13-protein. A theoretical extension of the sequence of ORF13 by the introduction of a single nucleotide yields a translated amino acid sequence that is highly homologous to VapE and other members of the␣Vap family. The data provided in this study indicate that the ORF13-protein is a novel member of the Vap family and is therefore designated VapI.  相似文献   

12.
Shikimate kinase (EC 2.7.1.71) is a committed enzyme in the seven-step biosynthesis of chorismate, a major precursor of aromatic amino acids and many other aromatic compounds. Genes for all enzymes of the chorismate pathway except shikimate kinase are found in archaeal genomes by sequence homology to their bacterial counterparts. In this study, a conserved archaeal gene (gi1500322 in Methanococcus jannaschii) was identified as the best candidate for the missing shikimate kinase gene by the analysis of chromosomal clustering of chorismate biosynthetic genes. The encoded hypothetical protein, with no sequence similarity to bacterial and eukaryotic shikimate kinases, is distantly related to homoserine kinases (EC 2.7.1.39) of the GHMP-kinase superfamily. The latter functionality in M. jannaschii is assigned to another gene (gi591748), in agreement with sequence similarity and chromosomal clustering analysis. Both archaeal proteins, overexpressed in Escherichia coli and purified to homogeneity, displayed activity of the predicted type, with steady-state kinetic parameters similar to those of the corresponding bacterial kinases: K(m,shikimate) = 414 +/- 33 microM, K(m,ATP) = 48 +/- 4 microM, and k(cat) = 57 +/- 2 s(-1) for the predicted shikimate kinase and K(m,homoserine) = 188 +/- 37 microM, K(m,ATP) = 101 +/- 7 microM, and k(cat) = 28 +/- 1 s(-1) for the homoserine kinase. No overlapping activity could be detected between shikimate kinase and homoserine kinase, both revealing a >1,000-fold preference for their own specific substrates. The case of archaeal shikimate kinase illustrates the efficacy of techniques based on reconstruction of metabolism from genomic data and analysis of gene clustering on chromosomes in finding missing genes.  相似文献   

13.
The ascomcete Ceratocystis fimbriata, the causal agent of “canker stain disease,” secretes a protein of 12.4 kDa that elicits phytoalexin synthesis and plant cell death. This protein, named cerato-platanin (CP), is also located in the cell walls of ascospores, hyphae, and conidia; it contains four cysteines (S-S bridged) and is moderately hydrophobic. The cp gene consists of a single exon and has 42 bp codifying for a signal peptide of 14 residues. The recombinant protein was obtained by cloning the cp gene of the mature protein in Escherichia coli (BL21), and a refolding step was needed to achieve the native active form. In the European Molecular Biology data bank, CP is reported as the first member of the CP family; this is the first example of an set of secreted fungal proteins whose primary structure is very similar. Nonetheless, the data also revealed some structural and functional features that make CP simlar to proteins of the hydrophobin family.  相似文献   

14.
Fesselin is a natively unfolded protein that is abundant in avian smooth muscle. Like many natively unfolded proteins, fesselin has multiple binding partners including actin, myosin, calmodulin and α-actinin. Fesselin accelerates actin polymerization and bundles actin. These and other observations suggest that fesselin is a component of the cytoskeleton. We have now cloned fesselin and have determined the cDNA derived amino acid sequence. We verified parts of the sequence by Edman analysis and by mass spectroscopy. Our results confirmed fesselin is homologous to human synaptopodin 2 and belongs to the synaptopodin family of proteins.  相似文献   

15.
16.
Prominin/CD133 is a 115/120-kDa integral membrane glycoprotein specifically associated with plasma membrane protrusions in epithelial and non-epithelial cells including neuroepithelial and hematopoietic stem cells. Here we report the identification as well as molecular and cell biological characterization of mouse, rat, and human prominin-2, a 112-kDa glycoprotein structurally related to prominin (referred to as prominin-1). Although the amino acid identity between prominin-2 and prominin-1 is low (<30%), their genomic organization is strikingly similar, suggesting an early gene duplication event. Like prominin-1, prominin-2 exhibits a characteristic membrane topology with five transmembrane segments and two large glycosylated extracellular loops. Upon its ectopic expression in Chinese hamster ovary cells as a green fluorescent protein fusion chimera, prominin-2 was also found to be associated with plasma membrane protrusions, as revealed by its co-localization with prominin-1, suggesting a related role. Consistent with this, prominin-2 shows a similar tissue distribution to prominin-1, being highly expressed in the adult kidney and detected all along the digestive tract as well as in various other epithelial tissues. However, in contrast to prominin-1, prominin-2 was not detected in the eye, which perhaps explains why a loss-of function mutation in the human prominin-1 gene causes retinal degeneration but no other obvious pathological signs. Finally, we present evidence for the existence of a family of pentaspan membrane proteins, the prominins, which are conserved in evolution.  相似文献   

17.
18.
phyB of tobacco, a new member of the phytochrome family.   总被引:2,自引:1,他引:1       下载免费PDF全文
R Kern  A Gasch  M Deak  S A Kay    N H Chua 《Plant physiology》1993,102(4):1363-1364
  相似文献   

19.
人类糖脂转运结构域2蛋白(Glycolipid transfer protein domain containing 2,GLTPD2)是糖脂转运蛋白(Glycolipid trans-fer protein,GLTP)家族的一个新成员,其功能目前尚不清楚.研究的目的在于通过生物信息学分析,预测人类GLTPD2的结构、...  相似文献   

20.
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号