首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collinear facilitation of contrast detection of achromatic stimuli has been studied over the past decade by different groups. We measured collinear facilitation of chromatic contrast detection under equal-luminance (photometric quantity) and under isoluminance (minimum motion technique) conditions, as two different controls. The facilitation was tested for chromatic contrast detection of a foveal Gabor signal flanked by two high chromatic-contrast Gabor signals. The results indicated a significant facilitation in the presence of spatial adjacent collinear chromatic contrast signals, when the flankers were located at a short distance, across all observers for three chromatic channels. The facilitation was compared to a non-collinear flanker configuration. The results indicated no facilitation effect at the opposing phase configuration, at a short flanker distance, whereas a small facilitation was observed with a configuration at a longer flanker distance. The findings suggest that the performance and specificity of chromatic collinear facilitation is not impaired with regard to achromatic mechanisms.  相似文献   

2.
We used a dual-masking paradigm to study how contrast discrimination can be influenced by the presence of adjacent stimuli. The task of the observer was to detect a target superimposed on a pedestal in the presence of flankers. The flankers (i) reduce the target threshold at zero pedestal contrast, (ii) shift the target threshold versus pedestal contrast (TvC) function horizontally to the left on a log-log plot at high pedestal contrasts, and (iii) reduce the size of pedestal facilitation at low pedestal contrasts. The horizontal shift at high pedestal contrasts suggests that the flanker effect is a multiplicative factor that cannot be explained by previous models of contrast discrimination. We extend the divisive inhibition model of contrast discrimination by implementing the flanker effect as a lateral multiplicative sensitivity modulation. This extended model provides a good account of the data.  相似文献   

3.
Attention can modulate sensitivity to local stimuli in early vision. But, can attention also modulate integration of local stimuli into global visual patterns? We recently measured effects of attention on the phenomenon of lateral interactions between collinear elements, commonly thought to reflect long-range mechanisms in early visual cortex underlying contour integration. We showed improved detection of low-contrast central Gabor targets in the context of collinear flankers, but only when the collinear flankers were attended for a secondary task rather than ignored in favor of an orthogonal flanker pair. Here, we contrast two hypotheses for how attention might modulate flanker influences on the target: by changing just local sensitivity to the flankers themselves (flanker-modulation-only hypothesis), or by weighting integrative connections between flanker and target (connection-weighting hypothesis). Modeled on the known nonlinear dependence of target visibility on collinear flanker contrast, the first hypothesis predicts that an increase in physical flanker contrast should readily offset any reduction in their effective contrast when ignored, thus eliminating attentional modulation. Conversely, the second hypothesis predicts that attentional modulation should persist even for the highest flanker contrasts. Our results showed the latter outcome and indicated that attention modulates flanker-target integration, rather than just processing of local flanker elements.  相似文献   

4.
Collinear interactions and contour integration   总被引:1,自引:0,他引:1  
Polat U  Bonneh Y 《Spatial Vision》2000,13(4):393-401
The visibility of a local target is influenced by the global configuration of the stimulus. Collinear configurations are a specific case in which facilitation or suppression of the target has been found to be dependent on the contrast threshold of the target. The role of collinear interactions in perceptual grouping, especially in contour integration, is still controversial. In the current study, the role of collinear interactions in noise was investigated using experimental conditions similar to those utilized in studies of contour integration. The contrast detection paradigm in the presence of similar Gabor elements presented in the background was used. The results show that contrast detection threshold of the target alone is increased (suppression) when it is embedded in randomly oriented background elements. However, when the target is flanked by two collinear Gabor elements, the target is facilitated even at higher target contrast levels. Facilitation is not found for orthogonal configurations. The results suggest that the response to a local element in a contour is modified by lateral facilitative and suppressive inputs from elements comprising the smooth contour and randomly oriented background elements, respectively. Thus, detection of elements along a contour should be considered as integration of global neuronal activity rather than as the output of local and individual neurons.  相似文献   

5.
Dresp B 《Spatial Vision》1999,12(2):129-142
Psychophysical thresholds for the detection of luminance targets improve significantly when the targets are presented in a specific context of spatially separated, collinear inducing stimuli defining visual contours. This phenomenon is generally referred to as a special case of detection facilitation called spatial facilitation. Spatial facilitation has been observed with luminance-defined. achromatic stimuli on achromatic backgrounds as well as with targets and inducers defined by colour contrast. This paper reviews psychophysical results from detection experiments with human observers showing the conditions under which spatially separated contour inducers facilitate the detection of simultaneously presented target stimuli. The findings point towards two types of spatial mechanisms: (i) Short-range mechanisms that are sensitive to narrowly spaced stimuli of small size and, at distinct target locations, selective to the contrast polarity of targets and inducers. (ii) Long-range mechanisms that are triggered by longer stimuli, generate facilitation across wider spatial gaps between targets and inducers, and are insensitive to their contrast polarity. Spatial facilitation with chromatic stimuli requires a longer inducer exposure than spatial facilitation with achromatic stimuli, which is already fully effective at inducer exposures of 30 ms. This difference in temporal dynamics indicates some functional segregation between mechanisms for colour and luminance contrast in spatial coding. In general, spatially induced detection facilitation can to a large extent be explained by mechanisms involving from-short-to-long-range interactions between cortical detectors.  相似文献   

6.
In crowding, perception of a target deteriorates in the presence of nearby flankers. Traditionally, it is thought that visual crowding obeys Bouma’s law, i.e., all elements within a certain distance interfere with the target, and that adding more elements always leads to stronger crowding. Crowding is predominantly studied using sparse displays (a target surrounded by a few flankers). However, many studies have shown that this approach leads to wrong conclusions about human vision. Van der Burg and colleagues proposed a paradigm to measure crowding in dense displays using genetic algorithms. Displays were selected and combined over several generations to maximize human performance. In contrast to Bouma’s law, only the target’s nearest neighbours affected performance. Here, we tested various models to explain these results. We used the same genetic algorithm, but instead of selecting displays based on human performance we selected displays based on the model’s outputs. We found that all models based on the traditional feedforward pooling framework of vision were unable to reproduce human behaviour. In contrast, all models involving a dedicated grouping stage explained the results successfully. We show how traditional models can be improved by adding a grouping stage.  相似文献   

7.
A Popple  U Polat  Y Bonneh 《Spatial Vision》2001,14(2):139-150
Our ability to align three Gabor patches depends upon their internal carrier orientation; we are better at aligning vertical or horizontal patches than oblique patches (Keeble and Hess, 1998). However, the tuning of alignment to patch orientation has not studied in detail. We measured the alignment of a vertical target with reference patches varying in orientation and found it tuned to vertical (collinear) patches at centre-to-centre separation of three carrier periods, with a steep increase for oblique references and slight downturn for horizontal (orthogonal) references. Next, we increased separation between the patches, testing collinear, side-by-side, orthogonal and oblique configurations. Surprisingly, we found that the tuning for collinear patches was preserved. All ten observers tested had lower alignment thresholds for collinear patches. This effect extended to an inter-patch separation of 10 carrier periods (20 envelope standard deviations). Additionally, we measured contrast detection thresholds for the reference patches using the same stimuli. The collinear facilitation of alignment was even greater than the collinear facilitation of detection.  相似文献   

8.
Psychophysicists use spatial or temporal two-alternative forced-choice (2AFC) paradigms interchangeably. Thus, experiments with the same general goal are carried out using one or the other paradigm by distinct or even the same research groups. For example, this situation has occurred both in studies on visual sensitivity in dyslexia and in studies on lateral interactions in peripheral vision. Conflicting results in either field (e.g. whether or not dyslexics have a visual deficit and whether or not peripheral detection is facilitated by the presence of flankers) appear to be resolved on the surmise that spatial and temporal 2AFC paradigms indeed produce different results. We designed experiments in which peripheral detection thresholds for Gabor patches (in the presence or absence of suprathreshold flankers) could be measured using completely equivalent spatial and temporal 2AFC paradigms so that any resultant difference can be unequivocally attributed to the effect of the paradigms themselves. The results showed that spatial 2AFC renders significantly lower sensitivity than temporal 2AFC when the target is presented along with suprathreshold flankers, but about the same sensitivity as temporal 2AFC when the target is presented alone. In the end, this resulted in statistically significant facilitation in peripheral vision only when measured with temporal 2AFC. Separate experiments at each of several peripheral locations revealed that the presence and magnitude of this effect varies not only with psychophysical paradigm but also with retinal locus.  相似文献   

9.

Background

Collinear patterns of local visual stimuli are used to study contextual effects in the visual system. Previous studies have shown that proximal collinear flankers, unlike orthogonal, can enhance the detection of a low contrast central element. However, the direct neural interactions between cortical populations processing the individual flanker elements and the central element are largely unknown.

Methodology/Principal Findings

Using voltage-sensitive dye imaging (VSDI) we imaged neural population responses in V1 and V2 areas in fixating monkeys while they were presented with collinear or orthogonal arrays of Gabor patches. We then studied the spatio-temporal interactions between neuronal populations processing individual Gabor patches in the two conditions. Time-frequency analysis of the stimulus-evoked VSDI signal showed power increase mainly in low frequencies, i.e., the alpha band (α; 7–14 Hz). Power in the α-band was more discriminative at a single trial level than other neuronal population measures. Importantly, the collinear condition showed an increased intra-areal (V1-V1 and V2-V2) and inter-areal (V1-V2) α-coherence with shorter latencies than the orthogonal condition, both before and after the removal of the stimulus contribution. α-coherence appeared between discrete neural populations processing the individual Gabor patches: the central element and the flankers.

Conclusions/Significance

Our findings suggest that collinear effects are mediated by synchronization in a distributed network of proximal and distant neuronal populations within and across V1 and V2.  相似文献   

10.
‘Stimulus roving’ refers to a paradigm in which the properties of the stimuli to be discriminated vary from trial to trial, rather than being kept constant throughout a block of trials. Rhesus monkeys have previously been shown to improve their contrast discrimination performance on a non-roving task, in which they had to report the contrast of a test stimulus relative to that of a fixed-contrast sample stimulus. Human psychophysics studies indicate that roving stimuli yield little or no perceptual learning. Here, we investigate how stimulus roving influences perceptual learning in macaque monkeys and how the addition of flankers alters performance under roving conditions. Animals were initially trained on a contrast discrimination task under non-roving conditions until their performance levels stabilized. The introduction of roving contrast conditions resulted in a pronounced drop in performance, which suggested that subjects initially failed to heed the sample contrast and performed the task using an internal memory reference. With training, significant improvements occurred, demonstrating that learning is possible under roving conditions. To investigate the notion of flanker-induced perceptual learning, flanker stimuli (30% fixed-contrast iso-oriented collinear gratings) were presented jointly with central (roving) stimuli. Presentation of flanker stimuli yielded substantial performance improvements in one subject, but deteriorations in the other. Finally, after the removal of flankers, performance levels returned to their pre-flanker state in both subjects, indicating that the flanker-induced changes were contingent upon the continued presentation of flankers.  相似文献   

11.
We investigated whether lateral masking in the near-periphery, due to inhibitory lateral interactions at an early level of central visual processing, could be weakened by perceptual learning and whether learning transferred to an untrained, higher-level lateral masking known as crowding. The trained task was contrast detection of a Gabor target presented in the near periphery (4°) in the presence of co-oriented and co-aligned high contrast Gabor flankers, which featured different target-to-flankers separations along the vertical axis that varied from 2λ to 8λ. We found both suppressive and facilitatory lateral interactions at target-to-flankers distances (2λ - 4λ and 8λ, respectively) that were larger than those found in the fovea. Training reduces suppression but does not increase facilitation. Most importantly, we found that learning reduces crowding and improves contrast sensitivity, but has no effect on visual acuity (VA). These results suggest a different pattern of connectivity in the periphery with respect to the fovea as well as a different modulation of this connectivity via perceptual learning that not only reduces low-level lateral masking but also reduces crowding. These results have important implications for the rehabilitation of low-vision patients who must use peripheral vision to perform tasks, such as reading and refined figure-ground segmentation, which normal sighted subjects perform in the fovea.  相似文献   

12.
Dresp B 《Spatial Vision》2000,13(4):343-357
Thresholds for line contrast detection (experiment 2) were measured with a two-alternative temporal forced-choice procedure as a function of the spatial position of a vertical target line with regard to two co-linear context lines. The different spatial positions of the target line corresponded to values near the position discrimination threshold (experiment 1) reflecting the just detectable lateral offset, or non-co-linearity, between the context lines which were vertically separated by about 100 minutes of visual arc. Target and context lines were vertically separated by about 30 minutes of arc, had equal contrast polarity in one case, and opposite contrast polarity in the other. Strong line contrast detection facilitation is found at perceptually co-linear target locations. This facilitation decreases noticeably at a horizontal target offset that corresponds to the alignment threshold measured with the context lines. The effects are independent of the relative contrast polarity of target and context and, as shown in a third experiment, also independent of both the relative length or number of lines, and the magnitude of their absolute co-axial separation. This independence seems to hold, provided individual line length and co-axial distance between lines are larger than what appears to be the lower limit of the long-range spatial domain for orientation or contour integration (i.e. 20 minutes of arc), as determined by previous studies. The findings reported here suggest that alignment thresholds are likely to define a critical lateral boundary in long-range detection facilitation with co-linear lines. They support models of contour integration based on interactions between neural mechanisms that integrate local signals of contrast, orientation, and relative position or end-to-end alignment. Such mechanisms may help to explain the formation of representations of virtual contours and object contours in human perception.  相似文献   

13.
Crowding is the impairment of peripheral target perception by nearby flankers. A number of recent studies have shown that crowding shares many features with grouping. Here, we investigate whether effects of crowding and grouping on target perception are related by asking whether they operate over the same spatial scale. A target letter T had two sets of flanking Ts of varying orientations. The first set was presented close to the target, yielding strong crowding. The second set was either close enough to cause crowding on their own or too far to cause crowding on their own. The Ts of the second set had the same orientation that either matched the target’s orientation (Grouped condition) or not (Ungrouped condition). In Experiment 1, the Grouped flankers reduced crowding independently of their distance from the target, suggesting that grouping operated over larger distances than crowding. In Experiments 2 and 3 we found that grouping did not affect sensitivity but produced a strong bias to report that the grouped orientation was present at the target location whether or not it was. Finally, we investigated whether this bias was a response or perceptual bias, rejecting the former in favor of a perceptual grouping explanation. We suggest that the effect of grouping is to assimilate the target to the identity of surrounding flankers when they are all the same, and that this shape assimilation effect differs in its spatial scale from the integration effect of crowding.  相似文献   

14.
Functional architecture of long-range perceptual interactions   总被引:4,自引:0,他引:4  
Polat U 《Spatial Vision》1999,12(2):143-162
The pattern of lateral interactions in the primary visual cortex, which has emerged from recent studies, conforms to the grouping rules of similarity, proximity, smoothness and closure. The goal of this paper is to understand the perceptual salience of oriented elements that are specifically organized to form a smooth contour. An overview of recent studies, in combination with new experimental results, is presented here to emphasis the idea that visual responses depend on input from both the center and the surround of the classical receptive field (CRF). It is assumed that normal lateral interactions produce a neuronal network that is formed by two antagonistic mechanisms: (i) excitation, that is spatially organized along the optimal orientation (collinear), and is predominant near the contrast threshold of the neuron, and (ii) inhibition, that is less selective and is distributed diffusely around the cell's response field. Thus, the inputs from the CRF and the anisotropic surround are summated non-linearly. The specificity of the facilitation and suppression along the collinear direction suggests the existence of second-order elongated collinear filters, which may increase the response similarity between neurons responding to elongated stimulus, thus may enhance the perceptual salience of anisotropic configurations such as contours. This causal connection is particularly evident in amblyopes, where abnormal development of the network results in the abnormal perception of contours.  相似文献   

15.
Interactions between visual stimuli have been found to be specific to the spatial frequency, orientation and phase of the interacting stimuli. We asked if there are any interactions between luminance-defined Gabor patches and Kanizsa-type illusory contours. In psychophysical experiments we studied whether induction of a vertical illusory line affects detection thresholds for a Gabor patch superimposed on this line and whether these effects depend on the orientation, spatial frequency and phase of the Gabor elements. Employing a 2AFC method with a staircase procedure we measured contrast detection thresholds and varied the orientation, spatial frequency and phase of the test Gabor patch and the separation between the two pacmen in four experimental series. The results show that in a situation where the two inducers generate perception of an illusory line, the contrast detection of the Gabor patch is facilitated relative to a control condition where the rotated pacmen do not induce illusory contours. This facilitation was more pronounced for test Gabor signals that were collinear to the illusory line, but the observer's performance was not altered by changes in the spatial frequency or phase of the Gabor stimuli. With increasing spatial separation of the two pacmen (and, consequently, with a decreasing support ratio), the difference between performance in the test and control conditions diminished. From the data obtained we cannot infer that we have measured some neural interactions between Gabor patches and Kanizsa-type illusory contours, and nor can we draw a unique conclusion about what causes the facilitation of detection of the test Gabor patch in the experimental situation that allows induction of the illusory line. We discuss possible mechanisms of the facilitation, such as contextual influences or a reduction of uncertainty about spatial location of the test Gabor patch.  相似文献   

16.
Contagious yawning is a form of response facilitation found in humans and other primates in which observing a model yawning enhances the chance that the observer will also yawn. Because contagious yawning seems to be more easily triggered when models are conspecifics or have a strong social bond with the observer, it has been proposed that contagious yawning is linked to empathy. A possible way to test this hypothesis is to analyze whether individuals’ responses differ when they observe models yawning or performing different involuntary (i.e., nose wiping, scratching) and voluntary (i.e., hand closing, wrist shaking) actions that are not linked to empathy. In this study, we tested the four great ape species with two different setups by exposing them to a human experimenter repeatedly performing these actions online, and video-recorded conspecifics repeatedly performing these actions on a screen. We examined which behaviors were subject to response facilitation, whether response facilitation was triggered by both human models and video-recorded conspecifics, and whether all species showed evidence of response facilitation. Our results showed that chimpanzees yawned significantly more when and shortly after watching videos of conspecifics (but not humans) yawning than in control conditions, and they did not do so as a response to increased levels of anxiety. For all other behaviors, no species produced more target actions when being exposed to either model than under control conditions. Moreover, the individuals that were more “reactive” when watching yawning videos were not more reactive when exposed to other actions. Since, at least in chimpanzees, (1) subjects only showed response facilitation when they were exposed to yawning and (2) only if models were conspecifics, it appears that contagious yawning is triggered by unique mechanisms and might be linked to empathy.  相似文献   

17.
Many factors can promote speciation, and one which has received much attention is chromosomal inversions. A number of models propose that the recombination suppressing effects of inversions facilitate the maintenance of differences between interbreeding populations in genes affecting adaptive divergence and reproductive isolation. These models predict that such genes will disproportionately reside within inversions, rather than in collinear regions. This hypothesis has received some support, but exceptions exist. Additionally, the effects of known low levels of recombination within inversions on these models are uninvestigated. Here, simulations are used to compare the maintenance of genetic differences between populations following secondary contact and hybridization in different inversion models. We compare regions with no recombination within them to regions with low recombination and to collinear regions with free recombination. Our most general finding is that the low levels of recombination within an inversion often result in the loss of accentuated divergence in inverted regions compared to collinear ones. We conclude that inversions can facilitate the maintenance of species differences under some conditions, but that large or qualitative differences between inverted and collinear regions need not occur. We also find that strong selection facilitates maintenance of divergence in a manner analogous to inversions.  相似文献   

18.
Collinearity among metrics of habitat loss and habitat fragmentation is typically treated as a nuisance in landscape ecology, and it is the norm to use statistical approaches that remove collinear information prior to estimating model parameters. However, collinearity may arise from causal relationships among landscape metrics and may therefore signal the occurrence of indirect effects (where one model predictor influences the response variable by driving changes in another influential predictor). Here we suggest that, far from being merely a statistical nuisance, collinearity may be crucial for accurately quantifying the effects of habitat loss versus habitat fragmentation. We use simulation modelling to create datasets of collinear landscape metrics in which collinearity arose from causal relationships, then test the ability of two statistical approaches to estimate the effects of these metrics on a simulated response variable: 1) multiple regression, which statistically removes collinearity, and was identified in a recent study as the best approach for estimating the effects of collinear landscape metrics (although this study did not account for any indirect effects implied by collinearity among metrics); and 2) path analysis, which accounts for the causal basis of collinearity. In agreement with this previous study, we found that multiple regression gave unbiased estimates of direct effects (effects not mediated by other model predictors). However, it gave biased estimates of total (direct + indirect) effects when indirect effects occurred. In contrast, path analysis reliably identified the causal basis of collinearity and gave unbiased estimates of direct, indirect, and total effects. We suggest that effective research on the impacts of habitat loss versus fragmentation will often require tools that can empirically test whether collinear landscape metrics are causally related, and if so, account for the indirect effects that these causal relationships imply. Path analysis, but not multiple regression, provides such a tool.  相似文献   

19.
"拥挤效应"被认为是外周视觉物体辨认过程中的一个重要瓶颈.它是指当目标被干扰子包围,在外周视野呈现时,观察者辨认目标的能力被大大削弱,尤其是当目标和干扰子之间存在某种相似性时.许多研究分别试图在不同层次上提出解释这一现象的机制.本文通过三个实验,使用了不同的视觉刺激图形的辨认任务(例如,三角形和箭头的朝向判断、数字和字母的辨认以及S形图形的朝向辨认),测量了目标和干扰子之间中心距离的阈值,结果一致地发现,当目标和干扰子之间存在拓扑性质差异(洞的个数差异)时,拥挤效应会显著降低,并且排除了目标和干扰子之间的主观相似性、形状和面积差异等可能的因素.从知觉组织的角度验证了当目标和干扰子之间存在拓扑性质差异时,拥挤效应会显著降低,这是首次发现的一个影响拥挤效应的新的维度.本文结果不仅为拥挤效应的机制提供了一个新的解释,也为大范围首先拓扑知觉在知觉物体形成中的作用提供了支持性证据.  相似文献   

20.
Cross-modal processing depends strongly on the compatibility between different sensory inputs, the relative timing of their arrival to brain processing components, and on how attention is allocated. In this behavioral study, we employed a cross-modal audio-visual Stroop task in which we manipulated the within-trial stimulus-onset-asynchronies (SOAs) of the stimulus-component inputs, the grouping of the SOAs (blocked vs. random), the attended modality (auditory or visual), and the congruency of the Stroop color-word stimuli (congruent, incongruent, neutral) to assess how these factors interact within a multisensory context. One main result was that visual distractors produced larger incongruency effects on auditory targets than vice versa. Moreover, as revealed by both overall shorter response times (RTs) and relative shifts in the psychometric incongruency-effect functions, visual-information processing was faster and produced stronger and longer-lasting incongruency effects than did auditory. When attending to either modality, stimulus incongruency from the other modality interacted with SOA, yielding larger effects when the irrelevant distractor occurred prior to the attended target, but no interaction with SOA grouping. Finally, relative to neutral-stimuli, and across the wide range of the SOAs employed, congruency led to substantially more behavioral facilitation than did incongruency to interference, in contrast to findings that within-modality stimulus-compatibility effects tend to be more evenly split between facilitation and interference. In sum, the present findings reveal several key characteristics of how we process the stimulus compatibility of cross-modal sensory inputs, reflecting stimulus processing patterns that are critical for successfully navigating our complex multisensory world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号