首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A modified staining technique for transverse tubular and sarcoplasmic reticular systems was used to investigate their occurrence in different types of intrafusal muscle fibres in cat tail spindles. Intrafusal muscle fibres can be divided into three basic regions, namely, the periaxial space (A-region), intracapsular area (B-region) and the extracapsular area (C-region); the components of these systems were seen to vary in structure and distribution. The occurrence of these systems also varied among the different types of intrafusal muscle fibres, namely, the bag1, bag2 and chain fibres. In bag1 fibres components were sparse in the A-region, increased slightly in the B-region, but were most developed in the C-region; triads were consistently located at the border between A- and I-bands. In bag2 fibres membrane components were noted in the A-region but were more abundant in the B-region where some tubular components showed transverse and longitudinal branches linked together in the form of a network; membrane systems diminished towards the C-region. The majority of triads were located within the A-bands. In chain fibres the membrane systems occurred more commonly in the A-region, while in the B- and C-regions, the transverse tubular system possessed numerous transverse and longitudinal branches forming irregularly distributed tubular networks. Some tubular branches were dilated, while other branches terminated as sacs among arrays of the sarcoplasmic reticular system in I-bands. Some transverse tubules bifurcated into two branches with numbers of dilated sarcoplasmic reticular cisternae lying on either side, or between, the branches. Triads sometimes occurred between A- and I-bands, but, generally, were situated well within A-bands.  相似文献   

2.
Summary Mammalian intrafusal fibre types (nuclear chain, nuclear bag1 and nuclear bag2 fibres) are known to differ in their ultrastructure, intensity of the myofibrillar histochemical ATP-ase reaction, type of innervation and time course of contraction. The present study concerns the myosin composition of these intrafusal fibre types in the soleus muscle (mouse) and the extensor digitorum longus muscle (rat). We used an immunohistochemical method with three myosin antisera raised in rabbits: anti chicken pectoral myosin, anti chicken heart myosin (1) and anti chicken heart myosin (2) (=anti chicken heart myosin (1) adsorbed with muscle powder from soleus muscle of guinea pig). The results showed that three intrafusal fibre types differed in their myosin composition. A comparison of intrafusal fibre types with extrafusal fibre types for the histochemical myofibrillar ATP-ase reactivity and the reactivity with myosin antisera showed a resemblance of nuclear chain fibres with extrafusal type II fibres and a difference between nuclear bag1 and nuclear bag2 fibres and all other fibre types.  相似文献   

3.
Summary Cat muscle spindles were examined histochemically in serial transverse sections of tenuissimus muscles stained for ATPase, NADH-TR and ChE alternating sequentially. Motor nerve terminals on nuclear bag1, bag2 and nuclear chain intrafusal muscle fibers were identified in periodic sections stained for ChE. Intrafusal fiber regions that carried ChE-active areas were then examined in staining for NADH-TR. The motor endings on the three types of intrafusal fiber differed in their apparent histochemical content of both ChE and NADH-TR. The observations suggest that functional differences may exist among motor nerve terminals on the various intrafusal fiber types.  相似文献   

4.
Summary Intrafusal muscle fibres in adult muscle spindles differ in their myosin composition. After selective motor denervation intrafusal muscle fibres develop mature ultrastructural characteristics. In order to evaluate the role of fusimotor innervation on the maturation of the myosin composition of intrafusal muscle fibres we have examined with immunohistochemical techniques i) the postnatal development of muscle spindles in new-born rats and in 7–21 day old rats; ii) muscle spindles in the EDL of 21-day-old rats de-efferented at birth. For the characterization of myosins in intrafusal fibres we used three myosin antisera: antipectoral myosin, antiheart myosin and antiheart myosin adsorbed with muscle powder from the soleus muscle of guinea pig. We show in this study that during development intrafusal fibres change immunoreactivity and that in the absence of motor innervation bag fibres do not fully develop the myosin characteristics of control spindles. We conclude that the maturation of bag1 and bag2 fibres apparently requires next to the inductive influence of sensory axon terminals the presence and activity of fusimotor axons.  相似文献   

5.
Summary The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

6.
Summary Muscle spindles were examined histochemically in serial transverse sections of cat tenuissimus muscles. The myofibrillar adenosine triphosphatase (ATPase) staining reaction was used to identify nuclear bag1, bag2 and nuclear chain intrafusal muscle fibers. Regional differences in ATPase staining occurred along the bag1 and bag2 fibers but not along the chain fibers. All intrafusal fiber types displayed regional variability in staining for nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR). Motor nerve terminals were demonstrated along the poles of bag1, bag2 and chain fibers by staining for cholinesterase (ChE). There was no consistent spatial correlation between the intensity of regional ATPase staining along the bag fibers and location, number or type of motor endings. However, most ChE deposits occurred in intrafusal fiber regions that displayed the greatest NADH-TR variability. Some fiber poles or whole intrafusal fibers were devoid of any ChE deposits but their ATPase and NADH-TR content was comparable to that of fibers bearing ChE deposits. The observations suggested that motor nerve fibers per se may not play a major role in determining the histoenzymatic content of intrafusal fibers.  相似文献   

7.
Muscle spindles are skeletal muscle mechanoreceptors that provide proprioceptive information to the central nervous system. The human adult masseter muscle has greater number, larger and more complex muscle spindles than the adult biceps. For a better knowledge of muscle diversity and physiological properties, this study examined the myosin heavy chain (MyHC) expression of muscle spindle intrafusal fibres in the human young masseter and young biceps muscles by using a panel of monoclonal antibodies (mAbs) against different MyHC isoforms. Eight MyHC isoforms were detected in both muscles-slow-tonic, I, IIa, IIx, foetal, embryonic, α-cardiac and an isoform not previously reported in intrafusal fibres, termed IIx′. Individual fibres co-expressed 2–6 isoforms. MyHC-slow tonic separated bag1, AS-bag1 and bag2 fibres from chain fibres. Typically, bag fibres also expressed MyHC-I and α-cardiac, whereas chain fibres expressed IIa and foetal. In the young masseter 98 % of bag1 showed MyHC-α cardiac versus 30 % in the young biceps, 35 % of bag2 showed MyHC-IIx′ versus none in biceps, 17 % of the chain fibres showed MyHC-I versus 61 % in the biceps. In conclusion, the result showed fundamental similarities in intrafusal MyHC expression between young masseter and biceps, but also marked differences implying muscle-specific proprioceptive control, probably related to diverse evolutionary and developmental origins. Finding of similarities in MyHC expression between young and adult masseter and biceps muscle spindles, respectively, in accordance with previously reported similarities in mATPase fibre type composition suggest early maturation of muscle spindles, preceding extrafusal fibres in growth and maturation.  相似文献   

8.
Summary In order to evaluate the effects of fusimotor elimination on the expression of myosin heavy chain (MHC) proteins in intrafusal fibres, we compared the muscle spindles in hind limb muscles of 3- to 6-week-old rats de-efferented at birth with those of their litter-mate controls. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal MHC isoforms, against synaptophysin, the neurofilament 68 kD subunit and laminin. We found that de-efferented intrafusal fibres differentiated, as in normal spindles, into nuclear bag1 and bag2 fibres both containing predominantly slow MHC, and nuclear chain fibres that contained fast and neonatal MHC. In both de-efferented and control intrafusal fibres the same MHCs were stained; the degree and extent of staining, however, varied. Both types of de-efferented bag fibres displayed a high content of slow tonic and slow twitch MHC along most of the fibre length, in contrast to the prominent regional variation in control bag fibres. In their encapsulated regions, the de-efferented bag fibres were more similar to each other in their reactivity to anti-fast twitch and anti-neonatal MHC antibodies than the control bag fibres. In these aspects they resembled more closely the bag fibres of newborn rats. The differences might be due to an arrest of specialization in the regional expression of the different MHC isoforms. Chain fibres developed MHC patterns identical to those of control spindles with all the antibodies used, even though they differentiated from the beginning in the absence of motor innervation.The structural differentiation of the capsule and sensory innervation in de-efferented muscle spindles, as shown by anti-laminin, anti-synaptophysin and anti-neurofilament staining, did not differ from the controls.We conclude, in agreement with previous studies, that the sensory innervation plays a key role in inducing and supporting the differentiation of intrafusal fibres and the specific expression of their MHC. However, we also show that motor innervation and/or muscle function seem to be necessary for the diversity in the expression and distribution of different slow and fast MHC isoforms in the bag1 and bag2 fibres.  相似文献   

9.
Summary In the present study we have investigated the reactivity of rat muscle to a specific monoclonal antibody directed against alpha cardiac myosin heavy chain. Serial cross sections of rat hindlimb muscles from the 17th day in utero to adulthood, and after neonatal denervation and de-efferentation, were studied by light microscope immunohistochemistry. Staining with anti- myosin heavy chain was restricted to intrafusal bag fibres in all specimens studied. Nuclear bag2 fibres were moderately to strongly stained in the intracapsular portion and gradually lost their reactivity towards the ends, whereas nuclear bag1 fibres were stained for a short distance in each pole. Nuclear bag2 fibres displayed reactivity to anti- myosin heavy chain from the 21st day of gestation, whereas nuclear bag1 fibres only acquired reactivity to anti- myosin heavy chain three days after birth. After neonatal de-efferentation, the reactivity of nuclear bag2 fibres to anti- myosin heavy chain was decreased and limited to a shorter portion of the fibre, whereas nuclear bag1 fibres were unreactive. We showed that a myosin heavy chain isoform hitherto unknown for skeletal muscle is specifically expressed in rat nuclear bag fibres. These findings add further complexity to the intricate pattern of isomyosin expression in intrafusal fibres. Furthermore, we show that motor innervation influences the expression of this isomyosin along the length of the fibres.  相似文献   

10.
Summary The expression of myosin heavy chain isoforms in muscle spindle fibres has been the subject of a number of immunocytochemical studies, some of them with discordant results. In order to assess whether these discrepancies are due to differences in the specificity and sensitivity of the antibodies used, we have compared the reactivity of rat muscle spindle fibres to two pairs of antibodies presumed to be directed against slow tonic (ALD 19 and ALD 58) and neonatal (NN5) and neonatal/fast (MF30) myosin heavy chains. Adult, developing and neonatally de-efferented muscle spindles from the rat hind limb muscles were studied in serial cross-sections processed for the peroxidase-antiperoxidase method. Important differences in the staining profiles of intrafusal fibres were noted when ALD 19 and ALD 58 were compared. ALD 19 stained the muscle spindle precursors from the seventeenth day in utero, whereas ALD 58 only did so by the twentieth day of gestation. In adult spindles ALD 19 stained the nuclear bag1 fibres along their entire length, whereas ALD 58 did not stain these fibres towards their ends. ALD 19 stained the nuclear bag2 fibres along the A, B and inner C region, but ALD 58 stained these fibres only in the A and the inner B regions. ALD 19 stained some nuclear chain fibres along a short equatorial segment, whereas ALD 58 did not stain the nuclear chain fibres at all. NN5 stained the nascent nuclear bag1 and chain fibre precursors at earlier stages of development than MF30. Clear differential staining between primary and secondary generation of both extra- and intrafusal myotubes was seen with NN5, wheras MF30 stained all myotubes alike. However, in postnatal spindles, MF30 was a very good negative marker of nuclear bag1 fibres. The staining profile of the adult fibres with NN5 and MF30 was rather similar. The staining pattern of neonatally de-efferented bag fibres obtained with ALD 19 and ALD 58 was practically identical and it differed from that of control spindles, confirming that motor innervation participates in the regulation of the expression of slow tonic MHC along the length of the nuclear bag2 fibres, as we have previously shown with ALD 19. The distinct staining patterns obtained with ALD 19 versus ALD 58 and with NN5 versus MF30 reflect differences in antibody sensitivity and specificity. These differences account, in part, for the discrepancies in the results of previous studies on muscle spindles, published by Kucera and Walro using ALD 58 and MF30, and by us using ALD 19 and NN5.  相似文献   

11.
Summary The pattern of regional expression of a slow-tonic myosin heavy chain (MHC) isoform was studied in developing rat soleus intrafusal muscle fibers. Binding of the slow-tonic antibody (ATO) began at the equator of prenatal intrafusal fibers where sensory nerve endings are located, and spread into the polar regions of nuclear bag2 and bag1 fibers but not nuclear chain fibers during ontogeny. The onset of the ATO reactivity coincided with the appearance of equatorial clusters of myonuclei (nuclear bag formations) in bag1 and bag2 fibers. Moreover, the intensity of the ATO reaction was strongest in the region of equatorial myonuclei and decreased with increasing distance from the equator of bag1 and bag2 fibers at all stages of prenatal and postnatal development. The polar expansion of ATO reactivity continued throughout the postnatal development of bag1 fibers, but ceased shortly after birth in bag2 fiber coincident with innervation by motor axons. Thus, afferents that innervate the equator might induce the slow-tonic MHC isoform in bag2 and bag1 fibers by regulating the myosin gene expression by equatorial myonuclei, and efferents or twitch contractile activity might inhibit the spread of the slow-tonic MHC isoform into the poles of bag2 but not bag1 fibers. Absence of ATO binding in chain fibers suggests that chain myotubes may not be as susceptible to the effect of afferents as are myotubes that develop into bag2 and bag1 fibers. The different patterns of slow-tonic MHC expression in the three types of intrafusal fiber may therefore result from the interaction of three elements: sensory neurons, motor neurons, and intrafusal myotubes.  相似文献   

12.
Summary Endings of four skeletofusimotor axons in a spindle of the cat tenuissimus muscle were examined in semithin (1-m thick) and ultrathin transverse serial sections. Two (dynamic) axons terminated on the nuclear bag1 intrafusal muscle fiber and on extrafusal fibers of the dark type. Two (static) axons terminated on the nuclear chain intrafusal fibers and extrafusal fibers of the intermediate type. The degree of indentation of axon terminals into the muscle surface, thickness of the sole plate and extent of folding of subjunctional membranes differed among intrafusal and extrafusal terminations of the same axon. Endings of axons on the bag1 and chain fibers were also morphologically dissimilar. Motor axons may not determine ending morphology. Rather the form and structure of a bag1 or chain ending may be determined by the type of intrafusal fiber on which the ending lies and the ending's distance from the primary sensory axon.  相似文献   

13.
Summary Muscle spindles were studied histochemically in serial transverse sections of specimens of the cat tenuissimus muscle. The nuclear chain intrafusal muscles fibers were separated into three subtypes, called long, intermediate and typical. The long chain and intermediate chain fibers tended to assume a particular position within the axial bundle of intrafusal fibers. The fibers were usually located in that layer of chain fibers that was positioned farthest away from the bag2 fiber. Furthermore, they were usually situated adjacent to the bag1 fiber throughout much of the extent of the spindle pole. Some long chain and intermediate chain fibers had several fiber nuclei abreast at the equator rather than a single row of central nuclei, as in most nuclear chain fibers. The relative position of intrafusal fibers within the cat spindle may reflect their order of formation during development, with the fibers retaining, to a variable degree, their association with the bag2 fiber which acted as template. Thus, the axial position of long chain and intermediate chain fibers suggests that they are among the first nuclear chain fibers to form. This may play a role in the known preferential innervation of these chain fibers by skeleto-fusimotor axons.  相似文献   

14.
Summary Over 150 complete and 139 incomplete single muscle spindles were examined in serial transverse sections of cat tenuissimus muscles in search for spindles lacking one of the two types of nuclear bag intrafusal fiber. Several histochemical reactions were used to type the intrafusal muscle fibers and assess the spindle motor and sensory innervation. One complete spindle lacked a bag1 fiber, and another spindle lacked a bag2 fiber. Several incomplete spindles also lacked bag1 fibers. In addition, ten double tandem spindles contained one capsular unit each that lacked the bag1 fiber, and one triple tandem spindle had two such capsules. All one-bag-fiber spindles had primary sensory innervation, but none had secondary sensory innervation. Their motor innervation was similar to that of the usual two-bag-fiber spindles in the number and disposition of intrafusal motor endings. It is unclear whether the one-bag fiber spindles, either single or tandem-linked, are products of an aberrant spindle development or represent a true anatomical and functional subcategory of the cat muscle spindle.  相似文献   

15.
Summary Intrafusal muscle fibres of the slow soleus (Sol) and fast vastus lateralis (VL) muscles of the rat were studied histochemically. Serial transverse sections were incubated for the localization of succinate dehydrogenase (SDH), alpha glycerophosphate dehydrogenase (GPD) and adenosine triphosphatase (ATPase). The latter was examined further after preincubation in acidic solution held at either low or room temperature (RT). The bag2 intrafusal fibres in both muscles displayed high regular and acid stable ATPase, but low SDH and GPD activities. Bag1 intrafusal fibres showed low to moderate regular ATPase, a regional heterogeneity after RT acid preincubation (low activity in juxtaequatorial and high in polar zones), moderate SDH, but low GPD reactions. In both muscles the chain fibres usually exhibited high ATPase for both regular and cold acid preincubated reactions, but usually low activity after RT acid preincubation; they had high SDH but variable GPD activities. In Sol muscle, however, approximately 25% of spindles contained chain fibres that showed high acid-stable ATPase reaction after both cold and RT acid preincubation. In contrast, chain fibres in some VL spindles had a characteristically low ATPase reaction even after cold acid preincubation. This study, therefore, has delineated the existence of an inherent heterogeneity among chain fibres (with respect to their histochemical reactions) in muscle spindles located within slow and fast muscles and also between those found within populations of either Sol or VL muscle spindles.  相似文献   

16.
Summary The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations.Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with antineonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition, (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested.Taken together, the data show that in adult rat solcus, slow tonic and neonatal myosin heavy, chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

17.
Summary Whether nerve activity and active contraction of myotubes are essential for the assembly and initial differentiation of muscle spindles was investigated by paralyzing fetal rats with tetrodotoxin (TTX) from embryonic day 16 (E16) to E21, prior to and during the period when spindles typically form. TTX-treated soleus muscles were examined by light and electron microscopy for the presence of spindles and expression of myosin heavy chain (MHC) isoforms by the intrafusal fibers. Treatment with TTX did not inhibit the formation of a spindle capsule or the expression of a slow-tonic MHC isoform characteristic of intrafusal fibers, but did retard development of spindles. Spindles of TTX-treated E21 muscles usually consisted of one intrafusal fiber (bag2) only rather than two fibers (bag1 and bag2) typically present in untreated (control) E21 spindles. Intrafusal fibers of TTX-treated spindles also had only one sensory region supplied by multiple afferents, and were devoid of motor innervation. These features are characteristic of spindles in normal E18–E19 muscles. Thus, nerve and/or muscle activity is not essential for the assembly of muscle spindles, formation of a spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers containing spindle-specific myosin isoforms. However, activity may promote the maturation of intrafusal bundles, as well as the maturation of afferent and efferent nerve supplies to intrafusal fibers.  相似文献   

18.
Distribution of SERCA isoforms in human intrafusal fibers   总被引:1,自引:1,他引:0  
The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that plays a crucial role in muscle relaxation by transporting cytosolic Ca2+ into the lumen of the sarco/endoplasmic reticulum. In this study, the presence of SERCA1 and SERCA2 was investigated in human intrafusal fibers by immunocytochemistry. Nuclear bag1 fibers contained both SERCA1 and SERCA2 isoforms, with predominant staining seen with SERCA2 in the A and B regions. Most nuclear bag2 fibers also contained SERCA1 and SERCA2 isoforms and their coexistence frequently occurred in the A region. SERCA1 was present whereas SERCA2 was generally absent in the nuclear chain fibers. The staining intensity seen with the SERCA1 monoclonal antibody varied in the order of chain>bag1>bag2. The expression of SERCA1 isoform was found to correlate with the presence of fast myosin heavy chain (MyHC) isoform in nuclear chain fibers, whereas for nuclear bag fibers there was no such apparent correlation between patterns of expression of SERCA and MyHC isoforms. The phenotype revealed for the human bag fibers was very sophisticated and adapted to attain a very wide range of contraction and relaxation velocities.  相似文献   

19.
Summary Sarcoplasmic reticulum (SR) Ca2+-pumping ATPase (Ca-ATPase) and calsequestrin (CaS) were visualized by indirect immunofluorescence at the polar regions of adult rat, rabbit and cat intrafusal fibers. The immunohistochemical reaction products were regarded as histochemical markers of the SR and as valid indicators of the distribution of the two Ca2+sequestering proteins. Static nuclear bag2 fibers displayed lower levels of both Ca-ATPase and CaS than the other two intrafusal fiber types. Nuclear chain fibers presented the highest Ca-ATPase levels and, together with dynamic nuclear bag1 fibers, they also exhibited relatively high amounts of CaS. The level of Ca-ATPase was lower in bag1 fibers than in nuclear chain fibers, but not as low as in bag2 fibers. The comparatively high levels of Ca-ATPase and CaS seen in nuclear chain fibers coincided with their reported faster contractile speeds compared to nuclear bag fibers.Dedicated to Professor Dr. T.H.Schiebler on the occasion of his 65th birthday  相似文献   

20.
Summary A total of 147 muscle spindles was studied histochemically in serial transverse sections of 42 cat tenuissimus muscle specimens. Nuclear bag1, nuclear bag2 and nuclear chain intrafusal muscle fibers were distinguished by the differential staining resulting from the reactions for myosin adenosine 5-triphosphatase and nicotinamide adenine dinucleotide tetrazolium reductase. The majority of intrafusal fibers were of the same histochemical type at both fiber poles. However, seven muscle spindles contained one nuclear bag fiber each that presented as a bag1 in one pole and as a bag2 in the other pole. These mixed nuclear bag fibers were found in spindles that also contained at least one bag1 and one bag2 fiber of equivalent histochemical presentation in both fiber poles. The mixed bag fibers displayed differences of apparent fiber diameter and relative polar length between the two fiber poles. The motor innervation pattern, as revealed by staining for cholinesterase, was also dissimilar between the two poles of mixed bag fibers. The study indicates that the spindle equatorial region may in some instances serve as a boundary between two morphologically and histochemically different poles of the same intrafusal fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号