首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By DNA sequencing and gene dissection, it has been revealed that Su+UGA#11, the mutant prfB of E. coli (Chang et al., 1990) has a double mutation compared with the wild-type LS653: one is a base substitution from T to C at the codon 63 and the other is from G to A at the codon 79. Both mutations cause amino acid substitution, Leu63----Phe63 (L63F) and Asp79----Gly79 (D79G), and are necessary to confer the efficient UGA suppressor activity.  相似文献   

2.
Three new rif-r-mutations, obtained independently, were localized in the rpoB gene coding for the beta-subunit of DNA-dependent RNA polymerase of E. coli. Two of them led to identical Asp(516)-Asn amino acid substitution with relatively low resistance of corresponding E. coli strains to rifampicin. The third mutation affected the His 526 residue transforming it into Tyr and endowed the E. coli cells with a high resistance against rifampicin.  相似文献   

3.
U Norris  P E Karp    A L Fimmel 《Journal of bacteriology》1992,174(13):4496-4499
Eight strains carrying amino acid substitutions within the c subunit of the F0F1 ATPase of Escherichia coli have been constructed by using site-directed mutagenesis. Three strains carrying the substitutions Gly-23----Leu, Ala-24----Leu, and Gly-38----Leu, which reside in or near the highly conserved glycine-rich region of the c subunit, are unable to carry out oxidative phosphorylation. Membranes prepared from these strains possess basal levels of ATPase activity. In contrast, strains carrying the substitutions Ile-30----Phe, Gly-33----Leu, Gly-58----Leu, and Lys-34----Val and the Lys-34----Val, Glu-37----Gln double substitution were found to possess a coupled phenotype similar to that of the wild type.  相似文献   

4.
5.
Three missense mutants in subunit a of the Escherichia coli F1F0-ATPase were isolated and characterized after hydroxylamine mutagenesis of a plasmid carrying the uncB (subunit a) gene. The mutations resulted in Asp119----His, Ser152----Phe, or Gly197----Arg substitutions in subunit a. Function was not completely abolished by any of the mutations. The F0 membrane sector was assembled in all three cases as judged by restoration of dicyclohexylcarbodiimide sensitivity to the F1F0-ATPase. The H+ translocation capacity of F0 was reduced in all three mutants. ATP-driven H+-translocation was also reduced, with the response in the Gly197----Arg mutant being almost nil and that in the Asp119----His and Ser152----Phe mutants less severely affected. The substituted residues are predicted to lie in the second, third, and fourth transmembrane helices suggested in most models for subunit a. The Gly197----Arg mutation lies in a very conserved region of the protein and the substitution may disrupt a structure that is critical to function. The Asp119----His and Ser152----Phe mutations also lie in areas with sequence conservation. A further analysis of randomly generated mutants may provide more information on regions of the protein that are crucial to function. Heterodiploid transformants, carrying plasmids with either the wild-type uncB gene or mutant uncB genes in an uncB (Trp231----stop) background, were characterized biochemically. The truncated subunit a was not detected in membranes of the background strain by Western blotting, and the uncB+ plasmid complemented strain showed normal biochemistry. The uncB mutant genes were shown to cause equivalent defects in either the heterodiploid background configuration, or after incorporation into an otherwise wild-type unc operon. The subunit a (Trp231----stop) background strain was shown to bind F1-ATPase nearly normally despite lacking subunit a in its membrane.  相似文献   

6.
In order to prepare a completely light-stable rhodopsin, we have synthesized an analog, II, of 11-cis retinal in which isomerization at the C11-C12 cis-double bond is blocked by formation of a cyclohexene ring from the C10 to C13-methyl. We used this analog to generate a rhodopsin-like pigment from opsin expressed in COS-1 cells and opsin from rod outer segments (Bhattacharya, S., Ridge, K.D., Knox, B.E., and Khorana, H. G. (1992) J. Biol. Chem. 267, 6763-6769). The pigment (lambda max, 512 nm) formed from opsin and analog II (rhodospin-II) showed ground state properties very similar to those of rhodopsin, but was not entirely stable to light. In the present work, 12 opsin mutants (Ala-117----Phe, Glu-122----Gln(Ala, Asp), Trp-126----Phe(Leu, Ala), Trp-265----Ala(Tyr, Phe), Tyr-268----Phe, and Ala-292----Asp), where the mutations were presumed to be in the retinal binding pocket, were reconstituted with analog II. While all mutants formed rhodopsin-like pigments with II, blue-shifted (12-30 nm) chromophores were obtained with Ala-117----Phe, Glu-122----Gln(Ala), Trp-126----Leu(Ala), and Trp-265----Ala(Tyr, Phe) opsins. The extent of chromophore formation was markedly reduced in the mutants Ala-117----Phe and Trp-126----Ala. Upon illumination, the reconstituted pigments showed varying degrees of light sensitivity; the mutants Trp-126----Phe(Leu) showed light sensitivity similar to wild-type. Continuous illumination of the mutants Glu-122----Asp, Trp-265----Ala, Tyr-268----Phe, and Ala-292----Asp resulted in hydrolysis of the retinyl Schiff base. Markedly reduced light sensitivity was observed with the mutant Trp-265----Tyr, while the mutant Trp-265----Phe was light-insensitive. Consistent with this result, the mutant Trp-265----Phe showed no detectable light-dependent activation of transducin or phosphorylation by rhodopsin kinase.  相似文献   

7.
8.
Site-directed substitution mutations were introduced into a cDNA expression vector (pUC120 pi) that encoded a human glutathione S-transferase pi isozyme to non-conservatively replace four residues (Tyr7, Arg13, Gln62 and Asp96). Our earlier X-ray crystallographic analysis implicated these residues in binding and/or chemically activating the substrate glutathione. Each substitution mutation decreased the specific activity of the enzyme to less than 2% of the wild-type. Glutathione-binding was also reduced; however, the Tyr7----Phe mutant still retained 27% of the wild-type capacity to bind glutathione, underlining the primary role that this residue is likely to play in chemically activating the glutathione molecule during catalysis.  相似文献   

9.
The DNA sequence of the dnaK gene of Escherichia coli was analyzed. The nucleotide sequence of the wild-type dnaK gene of E. coli B differed from that of E. coli K-12 in 15 bp, none of which altered the amino acid sequence. Two temperature-sensitive dnaK mutations were examined by cloning and sequence analyses. Results showed that one dnaK mutation, dnaK7(Ts), was a one-base substitution of T for C at nucleotide position 448 in the open reading frame yielding an amber nonsense codon. The other mutation, dnaK756(Ts), consisted of base substitutions (A for G) at three nucleotide positions, 95, 1364, and 1403, in the open reading frame resulting in an aspartic acid codon in place of a glycine codon.  相似文献   

10.
By using a photoactivatable analog of 11-cis-retinal in rhodopsin, we have previously identified the amino acids Phe-115, Ala-117, Glu-122, Trp-126, Ser-127, and Trp-265 as major sites of cross-linking to the chromophore. To further investigate the amino acids that interact with retinal, we have now used site-directed mutagenesis to replace a variety of amino acids in the membrane-embedded helices in bovine rhodopsin, including those that were indicated by cross-linking studies. The mutant rhodopsin genes were expressed in monkey kidney cells (COS-1) and purified. The mutant proteins were studied for their spectroscopic properties and their ability to activate transducin. Substitution of the two amino acids, Trp-265 and Glu-122 by Tyr, Phe, and Ala and by Gln, Asp and Ala, respectively, resulted in blue-shifted (20-30 nm) chromophore, and substitution of Trp-265 by Ala resulted in marked reduction in the extent of chromophore regeneration. Light-dependent bleaching behavior was significantly altered in Ala-117----Phe, Trp-265----Phe, Ala, and Ala-292----Asp mutants. Transducin activation was reduced in these mutants, in particular Trp-265 mutants, as well as in Glu-122----Gln, Trp-126----Leu (Ala), Pro-267----Ala (Asn, Ser), and Tyr-268----Phe mutants. These findings indicate that Trp-265 is located close to retinal and Glu-122, Trp-126, and probably Tyr-268 are also likely to be near retinal.  相似文献   

11.
In the catalytic chain of Escherichia coli aspartate transcarbamylase, Tyr240 helps stabilize the T-state conformation by an intrachain hydrogen bond to Asp271. Changes in kinetic characteristics of ATCase that result from disruption of this bond by site-specific mutation of Tyr240----Phe have been investigated by isotopic exchanges at chemical equilibrium. The Tyr240----Phe (Y240F) mutation caused the rate of the [32P] carbamyl phosphate (C-P) in equilibrium Pi exchange to decrease by 2-8-fold, without altering the [14C]Asp in equilibrium N-carbamyl-L-aspartate (C-Asp) rate. The mutation also caused the S0.5 and Hill nH values to decrease in virtually every substrate saturation experiment. Upon increasing the concentrations of the C-P,Pi or C-P,C-Asp reactant-product pairs, inhibition effects observed with the C-P in equilibrium Pi exchange for wild-type enzyme were not apparent with the Y240F mutant enzyme. In contrast, upon increasing the concentrations of the Asp,C-Asp and Asp,Pi pairs, inhibition effects on C-P in equilibrium Pi observed with wild-type enzyme became stronger with the Y240F mutant enzyme. These data indicate that the Tyr240----Phe mutation alters the kinetic mechanism in two different ways: on the reactant side, C-P binding prior to Asp shifts from preferred to compulsory order, and, on the product side, C-Asp and Pi release changes from preferred to nearly random order. These conclusions were also confirmed on a quantitative basis by computer simulations and fitting of the data, which also produced an optimal set of rate constants for the Y240F enzyme. The Arrhenius plot for wild-type holoenzyme was biphasic, but those for catalytic subunits and Y240F enzyme were linear (monophasic). Taken together, the data indicate that the Tyr240----Phe mutation destabilizes the T-state and shifts the equilibrium for the T-R allosteric transition toward the R-state by increasing the rate of T----R conversion.  相似文献   

12.
A novel regulatory protein for the rho proteins (rhoA p21 and rhoB p20), belonging to a ras p21/ras p21-like small molecular weight (Mr) GTP-binding protein (G protein) superfamily, was purified to near homogeneity from bovine brain cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor (GDI) for the rho proteins (rho GDI), inhibited the dissociation of GDP from rhoB p20 and the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to the GDP-bound form of rhoB p20 but not of that to the guanine nucleotide-free form. The Mr value of rho GDI was estimated to be about 27,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S value, indicating that rho GDI is composed of a single polypeptide without a subunit structure. The isoelectric point was about pH 5.7. rho GDI made a complex with the GDP-bound form of rhoB p20 with a molar ratio of 1:1 but not with the GTP gamma S-bound or guanine nucleotide-free form. rho GDI did not stimulate the GTPase activity of rhoB p20 and by itself showed neither GTP gamma S-binding nor GTPase activity. rho GDI was equally active for rhoA p21 and rhoB p20 but was inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p25A, and smg p21. rho GDI activity was detected in the cytosol fraction of various rat tissues. These results indicate that, in mammalian tissues, there is a novel type of regulatory protein specific for the rho proteins that interacts with the GDP-bound form of the rho proteins and thereby regulates the GDP/GTP exchange reaction of the rho proteins by inhibiting the dissociation of GDP from and the subsequent binding of GTP to them. Since there is a GTPase-activating protein for the rho proteins stimulating the GTPase activity of the rho proteins in mammalian tissues, the rho proteins appear to be regulated at least by GTPase-activating protein and GDI in a dual manner.  相似文献   

13.
We have determined the nucleotide sequences of three mutant rho genes encoding hyperfunctional rho proteins (rho S) together with their parent allele, rho-ts702. These mutant rho factors contain the following amino acid changes as deduced from their sequences: (1) the thermo-labile mutant, rho-ts702, has Thr304 substituting for Ala; (2) rho S-77 and rho S-81, which are selectively altered in the primary polynucleotide binding site, share an identical mutation, Leu3----Phe; (3) rho S-82, which is altered in both the primary and secondary polynucleotide binding sites, carries three amino acid substitutions together, Leu3----Phe, Asp156----Asn and Thr323----Ile. Dissection and functional characterization of each mutation in rho S-82 have revealed that Ile323 alone is responsible for alterations in both the secondary RNA interaction and the terminator selectivity observed with the original mutant, rho S-82. Taken together, these results not only confirm our proposal in the accompanying paper that the primary and secondary RNA binding sites differently contribute in determining the overall efficiency and site-specificity of termination, respectively, but also support the possibility that these binding sites exist as structurally distinct domains in rho protein. In contrast, Asn156 was shown to cause decreased termination efficiency, though it had no influence on RNA interactions. Thus, this amino acid residue appears to be associated with still another rate-determining step of termination, for instance, interactions between rho and RNA polymerase. On the basis of Chou-Fasman secondary structure predictions as well as amino acid sequence comparison with F1-ATPase, we discuss how the proposed domains are structurally and functionally related to the putative ATPase reactive center of rho protein.  相似文献   

14.
The kinetic characteristics of E. coli aspartate transcarbamylase, altered by site-specific mutagenesis of Glu-239----Gln, have been determined by equilibrium isotope-exchange kinetics and compared to the wild-type system. In wild-type enzyme, residue Glu-239 helps to stabilize the T-state structure by multiple bonding interactions with Tyr-165 and Lys-164 across the c1-c4 subunit interface; upon conversion to the R-state, these bonds are re-formed within c-chains. Catalysis of both the [14C]Asp in equilibrium C-Asp and [32P]ATP in equilibrium Pi exchanges by mutant enzyme occurs at rates comparable to those for wild-type enzyme. Saturation with different reactant/product pairs produced kinetic patterns consistent with strongly preferred order binding of carbamyl-P prior to Asp and carbamyl-Asp release before Pi. The kinetics for the Gln-239 mutant enzyme resemble those observed for catalytic subunits (c3), namely a R-state enzyme (Hill coefficient nH = 1.0) and Km (Asp) approximately equal to 6 mM. The Glu-239----Gln mutation appears to destablize both the T- and R-states, whereas the Tyr-240----Phe mutation destablizes only the T-state.  相似文献   

15.
Post-translational modifications of p21rho proteins.   总被引:6,自引:0,他引:6  
Post-translational modifications of the ras proteins, which are required for plasma membrane localization and biological function of the proteins, have been shown to include prenylation and carboxymethylation at the carboxyl terminal cysteine residue of the cysteine-aliphatic amino acid-aliphatic amino acid-any amino acid (CAAX) box. In addition, p21Ha-ras and p21N-ras, but not p21K-ras (B), are palmitoylated. The three mammalian rho proteins (A, B, and C) are also members of the ras superfamily but have distinct biological activities and different intracellular distributions from p21ras. Analysis showed all three rho proteins are modified by a COOH-terminal carboxymethylation similar to p21ras, whereas p21rhoC labeled with [3H]mevalonic acid in vivo revealed the presence of a C20 prenoid, similar to that already described for p21rhoA. However, in vivo and in vitro studies of p21rhoB showed this protein to be modified by both C15 and C20 prenoids. Mutation of C193 in the CAAX box abolished prenylation, whereas mutation of the adjacent C192 resulted in a significant reduction in the amount of the C20, but not C15 prenoid, recovered from p21rhoB. In vivo labeling studies with [3H]palmitic acid and mutational analysis showed that both cysteine residues at 189 and 192 upstream of the CAAX box in p21rhoB are sites for palmitoylation. We conclude that there are different populations of post-translationally modified p21rhoB in the cell and that the sequence specificity for geranylgeranyl- and farnesyltransferases may be more complicated than previously proposed.  相似文献   

16.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
In order to characterize mutations causing rifampicin and isoniazid resistance of M. tuberculosis in Syria, 69 rifampicin resistant (Rif(r)) and 72 isoniazid resistant (Inh(r)) isolates were screened for point mutations in hot spots of the rpoB, katG and inhA genes by DNA sequencing and real time PCR. Of 69 Rif(r) isolates, 62 (90%) had mutations in the rifampin resistance determining region (RRDR) of the rpoB gene, with codons 531 (61%), 526 (13%), and 516 (8.7%) being the most commonly mutated. We found two new mutations (Asp516Thr and Ser531Gly) described for the first time in the rpoB-RRDR in association with rifampicin resistance. Only one mutation (Ile572Phe) was found outside the rpoB-RRDR. Of 72 Inh(r) strains, 30 (41.6%) had a mutation in katGcodon315 (with Ser315Thr being the predominant alteration), and 23 (32%) harbored the inhA(-15C-->T) mutation. While the general pattern of rpoB-RRDR and katG mutations reflected those found worldwide, the prevalence of the inhA(-15C-->T mutation was above the value found in most other countries, emphasizing the great importance of testing the inhA(-15C-->T) mutation for prediction of isoniazid resistance in Syria. Sensitivity of a rapid test using real time PCR and 3'-Minor groove binder (MGB) probes in detecting Rif(r) and Inh(r) isolates was 90% and 69.4%, respectively. This demonstrates that a small set of MGB-probes can be used in real time PCR in order to detect most mutations causing resistance to rifampicin and isoniazid.  相似文献   

19.
20.
A sequence motif in the beta subunit of Escherichia coli F1 (Gly-Gly-Ala-Gly-Val-Gly-Lys-Thr, residue 149-156, where conserved residues are underlined) is one of the glycine-rich sequences found in many nucleotide binding proteins. In this study, we constructed a plasmid carrying all the F0F1 genes. This plasmid gave the highest membrane ATPase activity so far reported. Substitution of beta Gly149 by Ser suppressed the effect of the beta Ser174----Phe mutation (defective H(+)-ATPase), but beta Gly150----Ser substitution did not have this effect. A single mutation (beta Gly149----Ser or beta Gly150----Ser) gave active enzyme with altered divalent cation dependency and azide sensitivity: the beta Gly149----Ser mutant enzyme had 100-fold lower azide sensitivity and essentially no Ca(2+)-dependent activity, but had the wild-type level of Mg(2+)-dependent activity with active oxidative phosphorylation. Introduction of a beta Gly149----Ser or beta Gly150----Ser mutation with the beta Ser174----Phe mutation also lowered the Ca(2+)-dependent activity and azide sensitivity. Consistent with our previous findings (Takeyama, M., Ihara, K., Moriyama, Y., Noumi, T., Ida, K., Tomioka, N., Itai, A., Maeda, M., and Futai, M. (1990) J. Biol. Chem. 265, 21279-21284), a beta Thr156----Ala or Cys mutation impaired ATPase activity, suggesting that the hydroxyl moiety at position 156 is essential for the catalytic activity. The possible location of the catalytic site including divalent cation binding site(s) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号