首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sugantino M  Roderick SL 《Biochemistry》2002,41(7):2209-2216
The streptogramin class of antibiotics act to inhibit bacterial protein synthesis, and their semisynthetic derivatives, such as dalfopristin-quinupristin (Synercid), are used to treat serious or life-threatening infections due to multiply antibiotic resistant bacteria. Acquired resistance of the nosocomial pathogen Enterococcus faecium to the group A component of natural and semisynthetic streptogramin mixtures is a prerequisite for the streptogramin resistance phenotype and is mediated by a streptogramin acetyltransferase. The crystal structure of Vat(D), a streptogramin acetyltransferase from a human urinary isolate of E. faecium, has been determined as an apoenzyme and in complex with either acetyl-CoA or virginiamycin M1 and CoA. These structures illustrate the location and arrangement of residues at the active site, and point to His 82 as a residue that may function as a general base. The structural similarity of Vat(D) to the xenobiotic acetyltransferase from Pseudomonas aeruginosa indicates similarities in the catalytic mechanism for these enzymes as well as several shared and distinctive antibiotic binding interactions between these enzymes and their respective substrates. These results reveal the molecular basis for a reaction by which Gram-positive cocci acquire resistance to a last resort antibiotic.  相似文献   

2.
Lipka M  Filipek R  Bochtler M 《Biochemistry》2008,47(14):4257-4265
The semisynthetic streptogramin antibiotic quinupristin/dalfopristin (trade name Synercid, Aventis Pharma) is a mixture of the A-type streptogramin dalfopristin and the B-type streptogramin quinupristin, a capped hexapeptide macrolactone. Quinupristin/dalfopristin was developed to combat multidrug resistant pathogens, but suffers from its own problems with drug resistance. Virginiamycin B lyase (Vgb) inactivates the quinupristin component of Synercid by lactone ring opening. Remarkably, the enzyme promotes this reaction by intramolecular beta-elimination without the involvement of a water molecule. Recently, structures of S. aureus Vgb in the presence and absence of substrate were reported and used together with detailed mutagenesis data to suggest a catalytic mechanism. Here, we report an independent determination of the S. cohnii Vgb crystal structure and a biochemical characterization of the enzyme. As expected, the S. cohnii and S. aureus Vgb structures and active sites are very similar. Moreover, both enzymes catalyze quinupristin lactone ring opening with similar rate constants, albeit perhaps with different dependencies on divalent metal ions. Replacement of the conserved active site residues His228, Glu268, or His270 with alanine reduces or abolishes S. cohnii Vgb activity. Residue Lys285 in S. cohnii Vgb is spatially equivalent to the S. aureus Vgb active site residue Glu284. A glutamate but not an alanine residue can substitute for the lysine without significant loss of activity.  相似文献   

3.
Certain erythromycin-resistant strains of Staphylococcus aureus remain sensitive to other macrolide antibiotics. If these strains are exposed to low levels of erythromycin, resistance to other antibiotics is induced. The antibiotics to which resistance is induced by erythromycin include: other macrolides as well as lincosaminide, streptogramin (group B) antibiotics but not chloramphenicol, amicetin, streptogramin (group A) antibiotics, tetracyclines, and aminoglycosides. Hence erythromycin induces resistance exclusively towards inhibitors of 50S ribosomal subunit function and, thus far, only with respect to three of six known classes of inhibitors which act on this subunit. In the four strains tested, erythromycin did not induce resistance to pactamycin or bottromycin, to fusidic acid (which inhibits a function involving both subunits), or to other antibiotics which do not inhibit ribosomal function. Thus, by inducing resistance erythromycin could antagonize the action of other antibiotics, and a consistent pattern of antagonism was observed to each antibiotic class in all of the strains in which this could be tested, as well as to other antibiotic members of the same chemical class in each bacterial strain.  相似文献   

4.
Quantitative binding studies of [G-3H]streptogramin A and [G-3H]streptogramin B with high-salt-washed ribosomes were carried out in the presence of a minimum of 10% (v/v) ethanol because of the antibiotic insolubility in water. It was observed that the presence of streptogramin A increases the affinity of [G-3H]streptogramin B for the ribosome. Thus the dissociation constant for [G-3H]-streptogramin B interaction with the ribosome is Kd=13.3 nM in the presence of streptogramin A and Kd=59 nM in its absence. Furthermore the values for the dissociation constants for [G-3H]-streptogramin B interaction in the presence of 50% (v/v) ethanol, were Kd=0.13 micronM in the presence of streptogramin A and Kd=0.70 micronM in its absence. This increased affinity of [G-3H]streptogramin B in the presence of streptogramin A can explain the synergistic effects of mixtures of streptogramins A and B at the ribosome level.  相似文献   

5.
Antibiotic resistance is a growing problem in clinical settings as well as in food industry. Lactic acid bacteria (LAB) commercially used as starter cultures and probiotic supplements are considered as reservoirs of several antibiotic resistance genes. Macrolide–lincosamide–streptogramin (MLS) antibiotics have a proven record of excellence in clinical settings. However, the intensive use of tylosin, lincomysin and virginamycin antibiotics of this group as growth promoters in animal husbandry and poultry has resulted in development of resistance in LAB of animal origin. Among the three different mechanisms of MLS resistance, the most commonly observed in LAB are the methylase and efflux mediated resistance. This review summarizes the updated information on MLS resistance genes detected and how resistance to these antibiotics poses a threat when present in food grade LAB.  相似文献   

6.
Streptomyces ambofaciens produces spiramycin, a macrolide antibiotic and expresses an inducible resistance to macrolides, lincosamides and streptogramin B antibiotics (MLS). From a mutant of S.ambofaciens exhibiting a constitutive MLS resistance phenotype a resistance determinant was cloned on a low copy number vector (pIJ61) through its expression in Streptomyces lividans. Further characterization has shown that this determinant corresponded to a mutant rRNA operon with a mutation in the 23S rRNA gene. In different organisms, mutations leading to MLS resistance have been located at a position corresponding to the adenine 2058 of Escherichia coli 23S rRNA. In the 23S rRNA from S.ambofaciens a similar position for the mutation has been postulated and DNA sequencing of this region has shown an adenine to guanine transition at a position corresponding to 2058. S.ambofaciens possesses four rRNA operons which we have cloned. In Streptomyces, contrary to other bacteria, a mutation in one among several rRNA operons confers a selectable MLS resistance phenotype. Possible reasons for this difference are discussed.  相似文献   

7.
The constant increase of bacterial antibiotic-resistant strains is directly linked to a common use of antibiotics in medicine and animal breeding. It is suggested that the gut microbiota serves as a reservoir for antibiotic resistance genes that can be transferred from symbiotic bacteria to pathogenic ones, particularly due to phage transduction. In this study, using the PHASTER prophage predicting tool and CARD antibiotics resistance database we have searched for antibiotic resistance genes that are located within prophages in human gut microbiota. After analysing metagenomic assemblies of eight samples of antibiotic treated patients, lsaE, mdfA, and cpxR/cpxA genes were identified inside prophages. These genes confer resistance to antimicrobial peptides, pleuromutilin, lincomycins, streptogramins and also multidrug resistance. Three (0.46%) of 659 putative prophages predicted in the metagenomic assemblies contained antibiotics resistance genes in their sequences.  相似文献   

8.
Coresistance to macrolide, lincosamide, and streptogramin B-type (MLS) antibiotics by a common biochemical mechanism characterizes clinically resistant pathogens. Of 10 streptomycetes tested for resistance to macrolide, lincosamide, and streptogramin B-type antibiotics, only 1, Streptomyces erythreus, the organism used for production of erythromycin, was found resistant to all three classes; moreover, it was the only streptomycete in the series tested found to contain N6-dimethyladenine (m62A) in 23S ribosomal ribonucleic acid, the structural alteration of ribosomal ribonucleic acid associated with clinical resistance. Of the seven streptomycetes tested for the presence of m62A and N6-methyladenine (m6A), two, S. fradiae and S. cirratus, which produce the macrolide antibiotics tylosin and cirramycin, respectively, were found to contain m6A, but not m62A. The remaining strains tested, including strains which produce lincomycin and streptogramins, contained neither m6A nor m62A.  相似文献   

9.
Chloramphenicol acetyltransferases (CATs) were among the first antibiotic resistance enzymes identified and have long been studied as model enzymes for examining plasmid‐mediated antibiotic resistance. These enzymes acetylate the antibiotic chloramphenicol, which renders it incapable of inhibiting bacterial protein synthesis. CATs can be classified into different types: Type A CATs are known to be important for antibiotic resistance to chloramphenicol and fusidic acid. Type B CATs are often called xenobiotic acetyltransferases and adopt a similar structural fold to streptogramin acetyltransferases, which are known to be critical for streptogramin antibiotic resistance. Type C CATs have recently been identified and can also acetylate chloramphenicol, but their roles in antibiotic resistance are largely unknown. Here, we structurally and kinetically characterized three Vibrio CAT proteins from a nonpathogenic species (Aliivibrio fisheri) and two important human pathogens (Vibrio cholerae and Vibrio vulnificus). We found all three proteins, including one in a superintegron (V. cholerae), acetylated chloramphenicol, but did not acetylate aminoglycosides or dalfopristin. We also determined the 3D crystal structures of these CATs alone and in complex with crystal violet and taurocholate. These compounds are known inhibitors of Type A CATs, but have not been explored in Type B and Type C CATs. Based on sequence, structure, and kinetic analysis, we concluded that the V. cholerae and V. vulnificus CATs belong to the Type B class and the A. fisheri CAT belongs to the Type C class. Ultimately, our results provide a framework for studying the evolution of antibiotic resistance gene acquisition and chloramphenicol acetylation in Vibrio and other species.  相似文献   

10.
This Minireview summarizes the changes in the field of bacterial resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone (MLSKO) antibiotics since the nomenclature review in 1999. A total of 66 genes conferring resistance to this group of antibiotics has now been identified and includes 13 new rRNA methylase genes, four ATP-binding transporter genes coding for efflux proteins, and five new inactivating enzymes. During this same time period, 73 new genera carrying known rRNA methylase genes and 87 new genera carrying known efflux and/or inactivating genes have been recognized. The number of bacteria with mutations in the genes for 23S rRNA, L4 and L22 ribosomal proteins, resulting in reduced susceptibility to some members of the group of MLSKO antibiotics has also increased and now includes nine different Gram-positive and 10 different Gram-negative genera. New conjugative transposons carrying different MLSKO genes along with an increased number of antibiotics and/or heavy metal resistance genes have been identified. These mobile elements may play a role in the continued spread of the MLSKO resistance genes into new species, genera, and ecosystems.  相似文献   

11.
We determined the activities of new antibiotics telithromycin (ketolide) and quinupristin/dalfopristin (streptogramins) against 88 macrolide and/or lincosamide resistant coagulase-negative staphylococci (CoNS) isolates with defined resistance gene status. Telithromycin susceptibility was determined only in erythromycin-sensitive isolates (15) indicating the same mechanisms of resistance. In contrast, all erythromycin-resistant isolates (73) were either constitutively resistant to telithromycin (13 isolates with constitutive erm genes) or demonstrated telithromycin D-shaped zone (60 isolates with inducible msr(A) and/or erm). However, the level of inducible resistance conferred by msr(A) (35 isolates) was borderline even after induction by erythromycin. No quinupristin/dalfopristin resistant isolate was observed if tested by disk-diffusion method (DDM) but 18 isolates were intermediate (MIC = 1-3 mg/L) and two isolates resistant (MIC = 8 mg/L) if tested by E-test. All these isolates were resistant to streptogramin A and harbored vga(A) gene (1 isolate) or vga(A)LC gene (19 isolates). MICs for quinupristin/dalfopristin were higher for isolates with combination of streptogramin A resistance and constitutive MLSB resistance (MIC = 3-8 mg/L in 4 isolates) than for streptogramin A-resistant isolates susceptible to streptogramin B (MIC = 0.5-2 mg/L in 16 isolates). In addition to S. haemolyticus, vga(A)LC was newly identified in S. epidermidis and S. warnerii indicating its widespread occurrence in CoNS. Misidentification of low-level resistant isolates by DDM may contribute to dissemination of streptogramin A resistance.  相似文献   

12.
Synercid, a new semisynthetic streptogramin-derived antibiotic containing dalfopristin and quinupristin, is used in treatment of life-threatening infections caused by glycopeptide-resistant Enterococcus faecium and other bacterial pathogens. However, dissemination of genes encoding virginiamycin acetyltransferases, enzymes that confer resistance to streptogramins, threatens to limit the medical utility of the quinupristin-dalfopristin combination. Here we present structures of virginiamycin acetyltransferase D (VatD) determined at 1.8 A resolution in the absence of ligands, at 2.8 A resolution bound to dalfopristin, and at 3.0 A resolution in the presence of acetyl-coenzyme A. Dalfopristin is bound by VatD in a similar conformation to that described previously for the streptogramin virginiamycin M1. However, specific interactions with the substrate are altered as a consequence of a conformational change in the pyrollidine ring that is propagated to adjacent constituents of the dalfopristin macrocycle. Inactivation of dalfopristin involves acetyl transfer from acetyl-coenzyme A to the sole (O-18) hydroxy group of the antibiotic that lies close to the side chain of the strictly conserved residue, His-82. Replacement of residue 82 by alanine is accompanied by a fall in specific activity of >105-fold, indicating that the imidazole moiety of His-82 is a major determinant of catalytic rate enhancement by VatD. The structure of the VatD-dalfopristin complex can be used to predict positions where further structural modification of the drug might preclude enzyme binding and thereby circumvent Synercid resistance.  相似文献   

13.
β-Lactamases inactivate β-lactam antibiotics by hydrolysis of their endocyclic β-lactam bond and are a major cause of antibiotic resistance in pathogenic bacteria. The zinc dependent metallo-β-lactamase enzymes are of particular concern since they are located on highly transmissible plasmids and have a broad spectrum of activity against almost all β-lactam antibiotics. We present here essentially complete (>96 %) backbone and sidechain sequence-specific NMR resonance assignments for the Bacillus cereus subclass B1 metallo-β-lactamase, BcII, and for its complex with R-thiomandelic acid, a broad spectrum inhibitor of metallo-β-lactamases. These assignments have been used as the basis for determination of the solution structures of the enzyme and its inhibitor complex and can also be used in a rapid screen for other metallo-β-lactamase inhibitors.  相似文献   

14.
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.  相似文献   

15.
Ennis, Herbert L. (St. Jude Children's Research Hospital, Memphis, Tenn.). Inhibition of protein synthesis by polypeptide antibiotics. I. Inhibition in intact bacteria. J. Bacteriol. 90:1102-1108. 1965.-The mechanism of inhibition of growth of cells by the polypeptide antibiotics of the PA 114, vernamycin, and streptogramin complexes was studied. This inhibition apparently was due to the selective inhibition of protein synthesis by these antibiotics. Ribonucleic acid synthesis was unaffected by concentrations of the antibiotics which completely inhibited protein synthesis. Deoxyribonucleic acid synthesis was slightly inhibited. These antibiotics are composed of a number of components. Mixtures of equal amounts of PA 114 A and PA 114 B or vernamycin A and Balpha were more active in stopping protein synthesis in intact cells than each of the components of the antibiotic complex alone. Mutants resistant to one of the antibiotics were resistant to all of the group and, in addition, were resistant to erythromycin and oleandomycin.  相似文献   

16.
17.
A mutant of Bacillus subtilis was isolated that was resistant to the growth inhibitory activity of the synergistic antibiotics of the PA 114, streptogramin, and vernamycin complexes. Escherichia coli is naturally resistant to the action of these antibiotics. In both cases, it was shown that resistance was due to an inability of the bacteria to transport the antibiotics into the cell.  相似文献   

18.
Inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics in Streptomyces spp. comprises a family of diverse phenotypes in which characteristic subsets of the macrolide-lincosamide-streptogramin antibiotics induce resistance mediated by mono- or dimethylation of adenine, or both, in 23S ribosomal ribonucleic acid. In these studies, diverse patterns of induction specificity in Streptomyces and associated ribosomal ribonucleic acid changes are described. In Streptomyces fradiae NRRL 2702 erythromycin induced resistance to vernamycin B, whereas in Streptomyces hygroscopicus IFO 12995, the reverse was found: vernamycin B induced resistance to erythromycin. In a Streptomyces viridochromogenes (NRRL 2860) model system studied in detail, tylosin induced resistance to erythromycin associated with N6-monomethylation of 23S ribosomal ribonucleic acid, whereas in Staphylococcus aureus, erythromycin induced resistance to tylosin mediated by N6-dimethylation of adenine. Inducible macrolide-lincosamide-streptogramin resistance was found in S. fradiae NRRL 2702 and S. hygroscopicus IFO 12995, which synthesize the macrolides tylosin and maridomycin, respectively, as well as in the lincosamide producer Streptomyces lincolnensis NRRL 2936 and the streptogramin type B producer Streptomyces diastaticus NRRL 2560. A wide range of different macrolides including chalcomycin, tylosin, and cirramycin induced resistance when tested in an appropriate system. Lincomycin was active as inducer in S. lincolnensis, the organism by which it is produced, and streptogramin type B antibiotics induced resistance in S. fradiae, S. hygroscopicus, and the streptogramin type B producer S. diastaticus. Patterns of adenine methylation found included (i) lincomycin-induced monomethylation in S. lincolnensis (and constitutive monomethylation in a mutant selected with maridomycin), (ii) concurrent equimolar levels of adenine mono- plus dimethylation in S. hygroscopicus, (iii) monomethylation in S. fradiae (and dimethylation in a mutant selected with erythromycin), and (iv) adenine dimethylation in S. diastaticus induced by ostreogrycin B.  相似文献   

19.
Metallo-β-lactamases (MBLs) confer antibiotic resistance to bacteria by hydrolyzing and thus inactivating β-lactam antibiotics. They have raised concerns due to their broad substrate spectra, the absence of clinically useful inhibitors, and their rapid dissemination. The resulting threat to public health is enhanced by their potential to evolve into even more efficient enzymes through mutation. This is based on the assumption that these enzymes are relatively novel and in the beginning of their natural evolution. Their ongoing evolution has been manifested by the isolation of improved enzyme variants from clinical isolates, and improved variants have been generated under controlled laboratory conditions. Our ability to mimic and eventually predict the evolution of MBLs will likely put us into a better position to effectively combat MBL-conferred antibiotic resistance. This review summarizes how various approaches in recent years have brought us closer to that goal.  相似文献   

20.
Gram-negative bacteria are responsible for a large proportion of antibiotic-resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号