首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.  相似文献   

2.
To test our hypothesis that interferon-gamma (IFN-gamma) has a direct prooxidant effect on macrophage-mediated LDL oxidation behind its antioxidant effect via induction of inducible nitric oxide synthase (iNOS), we incubated LDL with wild-type (iNOS(+/+)) or iNOS knockout mouse (iNOS(-/-)) macrophages preincubated with IFN-gamma or IFN-gamma plus lipopolysaccharide (IFN-gamma/LPS) for 24 h. LDL oxidation was measured in terms of formation of thiobarbituric acid reactive substances (TBARS) and electrophoretic mobility. Thiol production, nitrite production, and superoxide production from macrophages were measured by using Ellman's assay, the Griess reagent, and the SOD-inhibitable cytochrome c reduction method, respectively. IFN-gamma alone or combined with LPS induced iNOS expression and increased nitrite production in iNOS(+/+) macrophages, but not in iNOS(-/-) macrophages. TBARS formation from LDL was suppressed in IFN-gamma- and IFN-gamma/LPS-treated iNOS(+/+) macrophages but was increased in IFN-gamma-treated iNOS(-/-) macrophages. In the presence of N(G)-monomethyl-l-arginine (l-NMMA), a NOS inhibitor, the suppressive effect of IFN-gamma and IFN-gamma/LPS was abolished and TBARS formation was even increased to a level above that of untreated iNOS(+/+) macrophage. NOC 18, an NO donor, dose dependently inhibited macrophage-mediated LDL oxidation. IFN-gamma increased superoxide and thiol productions in both types of macrophages. We conclude that IFN-gamma promotes macrophage-mediated LDL oxidation by stimulating superoxide and thiol production under conditions where iNOS-catalyzed NO release is restricted.  相似文献   

3.
4.
We investigated the effects of the Th2-like cytokines IL-4 and IL-13 and of IL-10 on the induction of iNOS and NO production in rat eosinophils. Addition of mIL-4 to the eosinophil culture increased iNOS activity and nitrite production but did not improve the stimulatory effect of IFN-gamma and LPS. In contrast to eosinophils, addition of mIL-4 to macrophage cultures inhibited the iNOS expression and nitrite production induced by IFN-gamma plus LPS. Addition of mIL-13 to the eosinophil cultures did not significantly change iNOS activity and nitrite production in cells stimulated or not with IFN-gamma plus LPS. On the other hand, IL-13 inhibited iNOS activity in IFN-gamma plus LPS-stimulated macrophages. In the presence of IL-10, iNOS activity in non-stimulated eosinophil or macrophage cultures was not significantly altered, but the enzyme expression was inhibited in IFN-gamma plus LPS-stimulated eosinophils or macrophages. The production of nitrite by eosinophils stimulated by IFN-gamma plus LPS was inhibited by the presence of IL-10 in the medium. In conclusion, eosinophils might exhibit differential modulation of the L-arginine/iNOS pathway depending on the profile of Th2 cytokines produced during allergic diseases. IL-4 appears to be an important Th2 cytokine involved in the induction of the L-arginine/iNOS pathway in eosinophils.  相似文献   

5.
Nitric oxide (NO) production is increased in the human colonic mucosa in intestinal inflammation. We examined the effect of corticosteroids and the role of mononuclear cells in this production. Colonic biopsies from patients with ulcerative colitis and normal controls were cultured with either budesonide or prednisolone in the presence of proinflammatory cytokines. Human mixed mononuclear cells (MMCs) were cocultured with HT-29 cells stimulated with IFN-gamma and LPS in the presence or absence of corticosteroids. Nitrite production was measured in supernatants by a modification of the Griess reaction, and inducible NO synthase (iNOS) mRNA expression was studied in colonic tissue by RT-PCR. Both steroids significantly suppressed the nitrite production and iNOS mRNA expression in inflamed colonic biopsies from ulcerative colitis patients and in cytokine-stimulated normal colonic biopsies but not in cytokine-stimulated HT-29 cells. Nitrite production by HT-29 cells was significantly increased (P < 0.01) in cocultures with MMCs stimulated with IFN-gamma and LPS. The presence of either prednisolone or budesonide significantly (P < 0.01) suppressed nitrite production from cocultures of HT-29 cells and MMCs but not from cultures of HT-29 cells stimulated with conditioned media from activated MMCs. Interestingly, stimulation of HT-29 with conditioned media from MMCs pretreated with steroids before stimulation with LPS and IFN-gamma induced a significantly (P < 0.01) lower nitrite production. These results suggest that the inhibitory effect of corticosteroids on the NO production in the intestinal inflammation might be via the inhibition of MMC-produced mediators responsible for NO production by colonic epithelial cells.  相似文献   

6.
7.
Osteopontin is induced by nitric oxide in RAW 264.7 cells   总被引:1,自引:0,他引:1  
Nitric oxide (NO) produced by macrophages is thought to contribute to various pathological conditions. Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of NO production. However, the relationship between NO and endogenous OPN in activated macrophages has not yet been elucidated. We therefore examined expression of endogenous iNOS and OPN in a murine macrophage cell line, RAW 264.7 cells, by treating the cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Treatment of cells with LPS and IFN-gamma resulted in an increase of iNOS mRNA to maximum at 12 h after stimulation. In contrast, OPN mRNA was induced more slowly than iNOS mRNA. Induction of both iNOS and OPN mRNA in RAW 264.7 cells was markedly suppressed by addition of the specific iNOS inhibitor S-2-aminoethyl isothiourea dihydrobromide. The NOS inhibitor NG-methyl-L-arginine also suppressed induction of OPN mRNA but hardly affected iNOS mRNA expression. The NO-releasing agent spermine-NONOate but not peroxynitrite enhanced induction of OPN mRNA. These results suggest that NO directly up-regulates the endogenous OPN in macrophages stimulated with LPS and IFN-gamma. This up-regulation of endogenous OPN may represent a negative feedback system acting to reduce iNOS expression.  相似文献   

8.
The effect of secretory group II phospholipase A2 (sPLA2) on the expression of the inducible NO synthase (iNOS) and the production of NO by macrophages was investigated. sPLA2 by itself barely stimulated nitrite production and iNOS expression in Raw264.7 cells. However, in combination with LPS, the effects were synergistic. This potentiation was shown for sPLA2 enzymes from sPLA2-transfected stable cells or for purified sPLA2 from human synovial fluid. The effect of PLA2 on iNOS induction appears to be specific for the secretory type of PLA2. LPS-stimulated activation of iNOS was inhibited by the well-known selective inhibitors of sPLA2 such as 12-epi-scalaradial and p-bromophenacyl bromide. In contrast, the cytosolic PLA2-specific inhibitors methyl arachidonyl fluorophosphate and arachidonyltrifluoromethyl ketone did not affect LPS-induced nitrite production and iNOS expression. Moreover, when we transfected cDNA-encoding type II sPLA2, we observed that the sPLA2-transfected cells produced two times more nitrites than the empty vector or cytosolic PLA2-transfected cells. The sPLA2-potentiated iNOS expression was associated with the activation of NF-kappa B. We found that the NF-kappa B inhibitor pyrrolidinedithiocarbamate prevented nitrite production, iNOS induction, and mRNA accumulation by sPLA2 plus LPS in Raw264.7 cells. Furthermore, EMSA analysis of the activation of the NF-kappa B involved in iNOS induction demonstrated that pyrrolidinedithiocarbamate prevented the NF-kappa B binding by sPLA2 plus LPS. Our findings indicated that sPLA2, in the presence of LPS, is a potent activator of macrophages. It stimulates iNOS expression and nitrite production by a mechanism that requires the activation of NF-kappa B.  相似文献   

9.
10.
The aim of this study was to investigate the inhibitory effect of penehyclidine hydrochloride (PHC) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS) production in human endothelial cell. Cultured endothelial cells were pretreated with PHC, followed by LPS treatment. NO activity were determined. iNOS expression and p38 mitogen-activated protein kinase (p38 MAPK) protein expression were measured by Western blot analysis. LPS treatment significantly induced p38 MAPK activation, iNOS expression, and NO production, which could be attenuated by 2 μg/ml PHC pretreatment. Furthermore, our study showed LPS-induced NO production and iNOS expression were suppressed by p38 MAPK inhibitor SB203580 pretreatment. We concluded that PHC attenuates NO production and iNOS expression by suppressing the activation of p38 MAPK pathway, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced endothelial cell injury.  相似文献   

11.
12.
Effects of iNOS-related NO on hearts exposed to liposoluble iron   总被引:3,自引:0,他引:3  
Inducible nitric oxide synthase (iNOS) protects heart against ischemia/reperfusion injury. However, it is unknown whether the beneficial effects of iNOS are mediated by the interaction of NO with radical oxygen species (ROS). To address this issue, we examined the effects of liposoluble iron-induced ROS generation in isolated perfused hearts from rats treated with lipopolysaccharide (LPS). LPS administration (10 mg/kg, i.p., 6 h before heart removal) induced iNOS expression and increased NO production as indicated by a 3-fold elevation of nitrite level in coronary effluents relative to control hearts. An enhanced expression of hemeoxygenase 1 protein was also observed in septic hearts compared to control. Iron-induced perfusion and contractile deficits were ameliorated by LPS with more important coronary than myocardial benefits. In iron-loaded hearts, oxidative stress as measured by the 2,3 dihydroxybenzoic acid/salicylic acid concentration ratio in cardiac tissue was 23% lower in septic than in control heart although the difference did not reach significance. In addition, the presence of the NO synthase inhibitor N-nitro-L-arginine in the perfusion medium totally blocked NO production but did not reverse the protective effects of LPS. The results indicate that LPS protects from iron-induced cardiac dysfunction by mechanisms independent on ex vivo NO production and suggest that NO acts as a trigger rather than a direct mediator of the cardioprotective effects of LPS in heart exposed to iron.  相似文献   

13.
通过RNA印迹分析和亚硝酸盐含量测定检查TNF-α、IL-1β和LPS对大鼠血管平滑肌细胞(VSMC)诱导型一氧化氮合酶(iNOS)基因表达及NO生成的影响.结果表明,TNF-α、IL-1β和LPS均能显著诱导VSMCiNOS基因表达和促进NO生成,其作用强度与浓度和作用时间有关;双因素(TNF-α+LPS,LPS+IL-1β)对诱导iNOS基因表达及NO生成产生协同作用.PolymyxinB和地塞米松可部分抑制TNF-α对iNOS基因表达的诱导作用及NO生成  相似文献   

14.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

15.
应用RNA印迹分析和亚硝酸盐含量测定检查脂多糖(LPS)对大鼠血管平滑肌细胞(VSMC)一氧化氮合酶(NOS)基因表达及NO合成的影响,用3H-TdR参入实验观察LPS对细胞DNA合成的影响.结果表明,LPS在诱导VSMCiNOSmRNA表达和促进NO合成的同时,抑制VSMCDNA合成.证明LPS的作用与其浓度和作用时间有关  相似文献   

16.
Prostaglandin E(1) (PGE(1)) reduces cell death in experimental and clinical manifestations of liver dysfunction. Nitric oxide (NO) has been shown to exert a protective or noxious effect in different experimental models of liver injury. The aim of the present study was to investigate the role of NO during PGE(1) protection against D-galactosamine (D-GalN) citotoxicity in cultured hepatocytes. PGE(1) was preadministered to D-GalN-treated hepatocytes. The role of NO in our system was assessed by iNOS inhibition and a NO donor. Different parameters related to apoptosis and necrosis, NO production such as nitrite+nitrate (NO(x)) release, iNOS expression, and NF-kappaB activation in hepatocytes were evaluated. The inhibition of iNOS reduced apoptosis induced by D-GalN in hepatocytes. PGE(1) protection against D-GalN injury was associated with its capacity to reduce iNOS expression and NO production induced by D-GalN. Nevertheless, iNOS inhibition showed that protection by PGE(1) was also mediated by NO. Low concentrations of a NO donor reduced D-GalN injury with a decrease in the extracellular NO(x) concentration. High concentrations of the NO donor enhanced NO(x) concentration and increased cell death by D-GalN. The present study suggests that low NO production induced by PGE(1) preadministration reduces D-GalN-induced cell death through its capacity to reduce iNOS expression and NO production caused by the hepatotoxin.  相似文献   

17.
18.
An aqueous acetone extract of the pericarps of Mallotus japonicus (MJE) inhibited nitric oxide (NO) production by a murine macrophage-like cell line, RAW 264.7, which was activated by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Seven phloroglucinol derivatives isolated from MJE exhibited inhibitory activity against NO production. Among these phloroglucinol derivatives, isomallotochromanol exhibited strong inhibitory activity toward NO production, exhibiting an IC(50) of 10.7 microM. MJE and the phloroglucinol derivatives significantly reduced both the induction of inducible nitric oxide synthase (iNOS) protein and iNOS mRNA expression. NO production by macrophages preactivated with LPS and IFN-gamma for 16 h was also inhibited by MJE and the phloroglucinol derivatives. Furthermore, MJE and the derivatives directly affected the conversion of L-[(14)C]arginine to L-[(14)C]citrulline by the cell extract. These results suggest that MJE and the phloroglucinol derivatives have the pharmacological ability to suppress NO production by activated macrophages. They inhibited NO production by two mechanisms: reduction of iNOS protein induction and inhibition of enzyme activity.  相似文献   

19.
20.
Antimicrobial peptide P18 markedly inhibited the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, whereas magainin 2 did not inhibit these activities. P18 dose-dependently reduced nitric oxide (NO) production by LPS-stimulated RAW 264.7 macrophage cells, with complete inhibition at 20 microg P18 ml(-1). In contrast, P18 had no effect on NO production and the expression of iNOS mRNA and iNOS protein by interferon-gamma (IFN-gamma)-stimulated RAW264.7 cells, suggesting P18 selectively inhibits LPS-stimulated inflammatory responses in macrophages. An LAL assay showed that P18 has strong LPS-neutralizing activity, indicating that P18 inhibits the inflammatory responses in LPS-stimulated macrophages by direct binding to LPS. Collectively, our results indicate that P18 has promising therapeutic potential as a novel anti-inflammatory as well as antimicrobial agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号