首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult male rats were exposed or sham-exposed to 60-Hz electric fields without spark discharges, ozone, or significant levels of other secondary variables. No effects were observed on body weights or plasma hormone levels after 30 days of exposure at an effective field strength of 68 kV/m. After 120 days of exposure (effective field strength = 64 kV/m), effects were inconsistent, with significant reductions in body weight and plasma levels of follicle-stimulating hormone and corticosterone occurring in one replicate experiment but not in the other. Plasma testosterone levels were significantly reduced after 120 days of exposure in one experiment, with a similar but not statistically significant reduction in a replicate experiment. Weanling rats, exposed or sham-exposed in electric fields with an effective field strength of 80 kV/m from 20 to 56 days of age, exhibited identical or closely similar growth trends in body and organ weights. Hormone levels in exposed and sham-exposed groups were also similar. However, there was an apparent phase shift between the two groups in the cyclic variations of concentrations of hormones at different stages of development, particularly with respect to follicle-stimulating hormone and corticosterone. We concluded that 60-Hz electric fields may bring about subtle changes in the endocrine system of rats, and that these changes may be related to alterations in episodic rhythms.  相似文献   

2.
The objective of this study was to investigate the effects of ultrasound treatment and physical exercise on the velocity of bone consolidation and resistance to deformation. We performed osteotomy in the upper third of the right tibia of rats. Physical training consisted of swimming 1 h per day with a load of 5% b.w. for 30 days. Therapy with medium-intensity ultrasound was applied daily on the damaged area. Wistar rats were divided into the following groups: osteotomized sedentary animals with no ultrasound treatment (1.OSnUS), osteotomized trained animals with no ultrasound treatment (2.OTnUS), osteotomized sedentary animals with ultrasound treatment (3.OSwUS), and osteotomized trained animals with ultrasound treatment (4.OTwUS). The animals were sacrificed for the following analyses: muscle glycogen, serum alkaline phosphatase at the 5th, 10th, 20th, and 30th days, test of maximum resistance to flexion, rupture flexion and mean tibial rigidity at the 30th day. Muscle glycogen was increased at the 20th day; alkaline phosphatase was elevated at the 5th and 20th days in groups 3.OSwUS and 4.OTwUS, and decreased at the 10th day. Groups 1.OSnUS and 2.OTnUS did not show significant variations. In the mechanical resistance tests, we noted that ultrasound therapy and the association of physical activity used in the present study showed significant differences in bone resistance and bone rigidity after 30 days of treatment. These facts suggest that ultrasound or physical activity, or their combination may accelerate the process of bone tissue repair.  相似文献   

3.
Two experiments were carried out to assess the effects of electric and magnetic fields (EMF) on blood thyroxine (T4) in dairy cattle. In experiment 1, 16 lactating pregnant Holstein cows were exposed to 10 kV/m, 30 microTesla (microT) EMF. The animals were divided into two groups of eight animals each. Each group was exposed to EMF according to one of two treatment sequences of three periods of 28 days each. Sequence 1 was EMF OFF-ON-OFF and sequence 2 was EMF ON-OFF-ON. During the last day of each treatment period, blood samples were collected every 4 h for 24 h to estimate T4 plasma concentrations. In experiment 2, 16 nonlactating, nonpregnant, multiparous Holsteins were exposed to 10 kV/m, 30 microT EMF. The animals were divided into two groups of eight animals each. Each group was exposed to EMF according to one of the two treatment sequences described above, except that each period amounted to the number of days corresponding to one estrous cycle. During treatment, blood samples were collected every other day for T4 analysis. In both experiments, the light cycle emulated a short photoperiod (8 h light/16 h dark). During the ON periods, the animals were exposed to EMF for 16 h, 8 h of the light period plus the first 8 h of during the dark period. In experiment 1, exposed animals did not have any change in T4 plasma concentrations due to treatment (P = .0968), but, the time of sample collection revealed a significant difference (P = .0012). In experiment 2, the effect of period (P = .0009) and the treatment by days interaction (P = .0003) were statistically significant. We conclude that a worst case scenario exposure of dairy cattle to 10 kV/m, 30 microT EMF influences, in a moderate fashion, the blood levels of thyroxine.  相似文献   

4.
The effects of extremely low frequency (ELF) electromagnetic (EM) fields on the maturation of the rat cerebellum were studied. Newborn rats were exposed to 60 Hz electric and magnetic fields under three different combinations in a specially constructed apparatus. The pups were irradiated for 7–8 h daily, with a 30-min interruption for nursing. Pups were kept with their mothers for the remainder of the time. After approximately 1, 2, or 3 weeks of exposure, the pups were killed. Control pups were sham exposed. The somatic growth of the irradiated rats did not show any significant difference from shamexposed controls. At 1 kV/m and 10 gauss exposure, there was a small but statistically significant decrease in cerebellar mass. In rats exposed at 1 kV/m and 10 gauss, DNA and RNA levels were significantly higher than those in shara-exposed controls at 6 and 13 days of age, but at 20 days, these two biochemical constituents were similar in both groups of rats. The ELF-EM treatment had no effect on protein and cerebroside concentrations. In terms of age effects. DNA and RNA exhibited increases from 6 to 13 days of age, and declined from 13 to 20 days. Protein and cerebroside levels exhibited increases during the 6–20 day periods. In rats exposed at 100 kV/m and 1 gauss, the DNA levels were initially less than those of sham-exposed controls at 8 days of age, reached approximately the same levels at 14 days, and then were higher than those of controls at 22 days. There was. therefore, a significant ELF-EM effect as well as a significant interaction between age and ELF-EM exposure. In terms of age effects, DNA levels for both control and exposed animals increased from 8 to 14 days. From 14 to 22 days, DNA levels of exposed rats continued to increase while those of the controls decreased. This age effect was significant. RNA levels in both groups of animals showed increases from 8 to 14 days of age, but the increase was less for the irradiated animals than for the controls. From days 14 to 22. RNA levels for both groups showed a reduction, but the decrease was greater in the irradiated than in control rats. ELF-EM treatment significantly reduced protein levels at 8 days of age. but at 14 to 22 days, protein levels of exposed rats were higher than those of controls. The cerebroside levels were not affected by exposure treatments but increased with the age of the animals. Exposure to 100 kV/m and 10 gauss did not exert any effect on the concentrations of DNA, RNA, protein, and cerebroside at all three time points examined. Both DNA and RNA exhibited increases with age from 6 to 13 days, and leveled off from 13 to 20 days. Protein and cerebroside levels also showed corresponding increases with the age of the animals. Morphological observations revealed no detectable changes in the irradiated animals in any experimental group. Thus, only biochemical studies indicate that exposure at certain ELF-EM field combinations induces alterations in cerebellar maturation. These changes were clearly detectable in the early postnatal period but gradually diminished with time. ©1993 Wiley-Liss, Inc.  相似文献   

5.
In one experiment, Sprague Dawley rats (16–21 days of gestation) and their offspring were exposed to 100-MHz (CW) electromagnetic radiation at 46 mW/cm2 (SAR 2.77 mW/g) for 4 h/day for 97 days. In another experiment, the pregnant rats were irradiated daily from 17 to 21 days of gestation with 2450-MHz (CW) microwaves at 10 mW/cm2 (SAR 2 mW/g) for 21 h/day. In a third experiment, 6-day-old rat pups were irradiated 7 h/day for five days with 2450-MHz radiation at 10 mW/cm2. Equal numbers of animals were sham irradiated in each group. Quantitative studies of Purkinje cells showed a significant and irreversible decrease in rats irradiated during fetal or fetal and early postnatal life. In animals exposed postnatally, and euthanized immediately after irradiation, significant decrease in the relative number of Purkinje cells was apparent. However, restoration apparently occurred after forty days of recovery.  相似文献   

6.
Groups of adult male Sprague Dawley rats (64 rats each) were exposed for 8 months to electromagnetic fields (EMF) of two different field strength combinations: 5μT - 1kV/m and 100μT - 5kV/m. A third group was sham exposed. Field exposure was 8 hrs/day for 5 days/week. Blood samples were collected for hematology determinations before the onset of exposure and at 12 week intervals. At sacrifice, liver, heart, mesenteric lymph nodes, bone marrow, and testes were collected for morphology and histology assessments, while the pineal gland and brain were collected for biochemical determinations. At both field strength combinations, no pathological changes were observed in animal growth rate, in morphology and histology of the collected tissue specimens (liver, heart, mesenteric lymph nodes, testes, bone marrow), and in serum chemistry. An increase in norepinephrine levels occurred in the pineal gland of rats exposed to the higher field strength. The major changes in the brain involved the opioid system in frontal cortex, parietal cortex, and hippocampus. From the present findings it may be hypothesized that EMF may cause alteration of some brain functions. Bioelectromagnetics 19:57–66, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
We found in a previously reported study that exposure to a 30-kV/m, 60-Hz electric field had significant effects on the social behavior of baboons. However, it was not established whether or not the effects were related specifically to the 30-kV/m intensity of the field. A new experiment was conducted to determine whether or not exposure to a 60-Hz electric field at 60 kV/m would produce like changes in the baboons' social behavior. We exposed one group of eight male baboons to an electric field 12 hours a day, 7 days a week, for 6 weeks. A second group of eight animals was maintained under sham-exposure (control) conditions. Rates of performing on each of six categories of social behavior and on four categories of nonsocial behavior were used as criteria for comparing exposed with unexposed subjects and for within-group comparisons during three six-week experimental periods: Pre-Exposure, Exposure, and Post-Exposure. The results indicate that (1) during the exposure period, exposed animals exhibited statistically significant differences from controls in means of performance rates based on several behavioral categories; (2) across all three periods, within-group comparisons revealed that behaviors of exposed baboons were significantly affected by exposure to the electric field; (3) changes in performance levels probably reflect a stress response to the electric field; and (4) the means of response rates of animals exposed at 60 kV/m were higher, but not double, those of animals exposed at 30 kV/m. As in the 30-kV/m experiment, animals exposed at 60 kV/m exhibited significant differences in performances of Passive Affinity, Tension, and Stereotypy. Mean rates of performing these categories were 122% (Passive Affinity), 48% (Tension), and 40% (Stereotypy) higher in the exposed group than in the control group during exposure to the 60-kV/m field.  相似文献   

8.
Rats exposed to microwaves prenatally (2,450 MHz, 10 mW/cm2, 3 h/day, days 5-20 of gestation) or perinatally (same as above plus days 2-20 postnatally) were examined by a neurobehavioral test battery on postnatal days 30 and 100. Body mass, locomotor activity, startle to acoustic and air-puff stimuli, fore- and hindlimb grip strength, negative geotaxis, reaction to thermal stimulation, and swimming endurance were assessed. The prenatally and the perinatally exposed rats (male and female) weighted more than sham-exposed rats at 30, but not at 100, days of age. In addition, the perinatally exposed animals had less swimming endurance at 30, but not at 100, days of age relative to sham-exposed rats. For the other measures, only the air-puff startle response was altered and was limited to the prenatally exposed female pups; ie, at postnatal day 30, the startle response was increased in magnitude, and at postnatal day 100, the response was decreased. No other reliable effects were observed. In a second experiment, rats treated as described above were examined for alterations in body mass, locomotor activity, reaction to air-puff stimuli, reaction to thermal stimulation, and swimming endurance at postnatal days 30-36. Again, perinatally exposed rats were larger in body mass and had less swimming endurance compared with sham-exposed rats. The latency to the air-puff startle response was longer in female pups exposed prenatally. These data indicate that altered endurance and gross motor activity result from perinatal exposure to microwave irradiation.  相似文献   

9.
Two experiments were conducted to test the hypothesis that electric and magnetic field (EMF) exposure may result in endocrine responses similar to those observed in animals exposed to long days. In the first experiment, 16 lactating, pregnant Holstein cows were assigned to two replicates according to a crossover design with treatment switchback. All animals were confined to wooden metabolic cages and maintained under short day photoperiods (8 h light/16 h dark). Treated animals were exposed to a vertical electric field of 10 kV/m and a horizontal magnetic field of 30 microT (EMF) for 16 h/day for 4 weeks. In a second, similar experiment, 16 nonlactating, nonpregnant Holstein cows subjected to short days were exposed to EMF, using a similar protocol, for periods corresponding to the duration of one estrous cycle. In the first experiment, circulating MLT concentrations during the light period showed a small numerical decrease during EMF exposure (P < .05). Least-square means for the 8 h light period were 9.9 versus 12.4 pg/ml, SE = 1.3. Melatonin concentrations during the dark period were not affected by the treatment. A similar trend was observed in the second experiment, where MLT concentrations during the light period tended to be lower (8.8 pg/ml vs. 16.3 pg/ml, P < .06) in the EMF exposed group, and no effects were observed during the dark period. Plasma prolactin (PRL) was increased in the EMF exposed group (16.6 vs. 12.7 ng/ml, P < .02) in the first experiment. In the second experiment, the overall PRL concentrations found were lower, and the mean plasma PRL concentration was not affected by treatment. These experiments provide evidence that EMF exposure may modify the response of dairy cows to photoperiod.  相似文献   

10.
This study was undertaken to determine the effects of extremely low frequency (ELF; 60 Hz) electromagnetic (EM) fields on somatic growth and cortical development, as well as biochemical and morphological maturation, of the rat neopallium. On the fifth day of pregnancy, female rats were put in pairs into plastic cages that were housed in a specially constructed apparatus for irradiation under three separate sets of combination and intensity: 1) 1 kV/m and 10 gauss; 2) 100 kV/m and 1 gauss; and 3) 100 kV/m and 10 gauss. The dams were exposed for 23 h daily, from days 5 through 19 postconception after which they were returned to cages outside the exposure apparatus until they littered. The neonates were culled to eight pups per litter. At 0 (birth), 5, 12, and 19 days postnatally, they were killed for biochemical and morphological studies. Another group of pregnant rats was sham-exposed in an identical apparatus, which was not energized, and the pups were used as controls. The irradiated rats exhibited no physical abnormalities, nor did they show brain deformities such as swelling or herniation following exposure to ELF-EM fields. There was no difference in somatic growth between control and exposed rats, but a small reduction in cortical weight was observed in rats exposed at 1 kV/m and 10 gauss, and 100 kV/m and 1 gauss, respectively. Biochemical measurements of DNA. RNA, protein, and cerebroside concentrations indicated that among the three separate exposures, only the neopallium of rats exposed at 1 kV/m and 10 gauss showed a small reduction in DNA level, as well as small reductions in RNA and protein levels. No changes were noticed in cerebroside levels in any exposed animals, and there were no differences in protein/DNA and cerebroside/DNA ratios between control and exposed rats. Morphological observations did not reveal any detectable alterations in the irradiated rats. These results indicate that exposure to ELF-EM fields caused minimal or no changes in somatic growth and cerebral development of the rat. © 1993 Wiley-Liss, Inc.  相似文献   

11.
A series of three experiments was performed to determine the effects of 30-day exposures to uniform 60-Hz electric fields (100 kV/m) on reproduction and on growth and development in the fetuses and offspring of rats. In the first experiment, exposure of females for 6 days prior to and during the mating period did not affect their reproductive performance, and continued exposure through 20 days of gestation (dg) did not affect the viability, size, or morphology of their fetuses. In the second experiment, exposure of the pregnant rat was begun on 0 dg and continued until the resulting offspring reached 8 days of age. In the third experiment, exposure began at 17 dg and continued through 25 days of postnatal life. In the second and third experiments, no statistically significant differences suggesting impairment of the growth or survival of exposed offspring were detected. In the second experiment, a significantly greater percentage of the exposed offspring showed movement, standing, and grooming at 14 days of age than among-sham-exposed offspring. There was a significant decrease at 14 days in the percentage of exposed offspring displaying the righting reflex in the second experiment and negative geotropism in the third experiment. These differences were all transient and were not found when the animals were tested again at 21 days of age. Evaluation of the reproductive integrity of the offspring of the second experiment did not disclose any deficits.  相似文献   

12.
Rats, given the choice, avoid exposure to alternating current (ac) 60-Hz electric fields at intensities ? 75 kV/m. This study investigated the generality of this behavior by studying the response of rats when exposed to high voltage direct current (HV dc) electric fields. Three hundred eighty male Long Evans rats were studied in 9 experiments with 40 rats per experiment and in one experiment with 20 rats to determine 1) if rats avoid exposure to HVdc electric fields of varying field strengths, and 2) if avoidance did occur, what role, if any, the concentration of air ions would have on the avoidance behavior. In all experiments a three-compartment glass shuttlebox was used; either the left or right compartment could be exposed to a combination of HVdc electric fields and air ions while the other compartment remained sham-exposed. The third, center compartment was a transition zone between exposure and sham-exposure. In each experiment, the rats were individually assessed in 1-h sessions where half of the rats (n = 20) had the choice to locomote between the two sides being exposed or sham-exposed, while the other half of the rats'(n = 20) were sham-exposed regardless of their location, except in one experiment where there was no sham-exposed group. The exposure levels for the first six experiments were 80, 55, 42.5, 30, ?36, and ?55 kV/m, respectively. The air ion concentration was constant at 1.4 × 106 ions/cc for the four positive exposure levels and ?1.4 × 106 ions/cc for the two negative exposure levels. Rats having a choice between exposure and non-exposure relative to always sham-exposed control animals significantly reduced the amount of time spent on the exposed side at 80kV/m (P < .002) as they did at both 55 and ?55 kV/m (P < .005). No significant differences between groups were observed at 42.5, 30, or -36 kV/m. To determine what role the air ion concentration might have had on the avoidance behavior at field strengths of 55 kV/m or greater, four additional experiments were conducted. The HVdc exposure level was held constant at either ?55 kV/m (for three experiments) or -55 kV/m (for 1 experiment) while the air ion concentration was varied between experiments at 2.5 × 105 ions/cc, 1.0 × 104 for two of the experiments and was below the measurement limit (< ± 2 × 103 ions/cc) for the other two experiments at 55 and ?55 kV/m. The exposed rats significantly reduced the amount of time spent on the exposed side at 55 and ?55 kV/m, relative to the sham-exposed rats regardless of air ion concentration (all at P < .005). Thus, HVdc electric fields of ? + or ?55 kV/m are sufficient to produce avoidance behavior in rats. Positive or negative air ion concentrations were not significant factors in these avoidance outcomes. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Previous studies have raised the possibility of reproductive and developmental changes in miniature swine chronically exposed to a strong 60-Hz electric field. Two replicate experiments on rats were performed to determine if similar changes could be detected in animals exposed under a comparable regime, which was based on average, induced-current densities and on the chronology of reproductive development, as dosimetrically and biologically scaled. Beginning at three months of age, female rats of the F0 generation and their subsequent offspring were chronically exposed to a 60-Hz electric field (100 kV/m unperturbed) for 19 h/day for the duration of experimentation. After four weeks of exposure, F0 female rats were mated to unexposed male rats during the field-off period. No significant developmental effects were detected in their litters, confirming our previous results with swine and rats. The F0 females were mated for a second time at 7.2 months of age, and the fetuses were evaluated shortly before term. In the first experiments, the incidence of intrauterine mortality was significantly less in exposed than in sham-exposed litters, and there was a tendency (P = .12) for an increased incidence of malformed fetuses in exposed litters. Neither end point was significantly affected in the second experiment. Copulatory behavior of the female F1 offspring, which were bred at three months of age, was not affected in either experiment. There was a statistically significant decrease in the fertility of F1 exposed females and a significant increase in the fraction of exposed litters with malformed fetuses in the first experiment; both end points were essentially the same in the sham and exposed groups of the second experiment. That the significant effects detected in the first experiment were not seen in the second may be attributed to random or biological variation. Alternatively, the finding may indicate that the response threshold for induction of malformations lies near 100 kV/m.  相似文献   

14.
A three-year investigation was conducted on the biological effects of high-intensity electric field exposures of rats for up to 18% of their life span. Two hundred and forty adult male rats, divided into groups of 20 animals each, were exposed at ground potential for 8 h/ day at 25-kV/m and 100-kV/m 50-Hz electric fields or were sham exposed for 280, 440, and 1240 h. The corresponding ages at sacrifice were 140, 164, and 315 days. An additional group of 40 rats was investigated under similar experimental conditions after 440 h of exposure at floating potential. Independent of exposure duration, mode of grounding, and field strength, no statistical differences in body weight, morphology, and histology of the liver, heart, mesenteric lymph nodes, and blood variables (hematology and serum chemistry) were found in comparison with sham-exposed animals. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (TS)at sacrifice varied widely among experimental animals in the same group but did not differ in exposed compared with sham-exposed rats. A nonsignificant tendency toward a decrease in the testes/body weight ratio was found after 1240 h of exposure. Microscopic examination of a large number of specimens showed no quantitative or qualitative statistical differences in testes alterations either among exposed animals or between exposed and their corresponding sham-exposed groups. We conclude that 50-Hz electric field exposure, even of long duration at very high field strengths, does not induce harmful effects on tissues with high cellular turnover rates and does not impair the reproductive function of rats. Moreover, after exposure, all variables investigated were well within the normal physiological range. © 1993 Wiley-Liss. Inc.  相似文献   

15.
Sprague-Dawley male rats, maintained in a 14:10 h light:dark cycl were exposed for 30 days (starting at 56 days of age) to a 65 kV/m, 60 Hz electric field or to a sham field for 20 h/day beginning at dark onset. Pineal N-acetyltransferase (NAT), hydroxy-indole-o-methyl transferase (HIOMT), and melatonin as well as serum melatonin were assayed. Preliminary data on unexposed animals indicated that samples obtained 4 h into the dark period would reveal either a phase delay or depression in circadian melatonin synthesis and secretion. Exposure to electric fields for 30 days did not alter the expected nighttime increase in pineal NAT, HIOMT, or melatonin. Serum melatonin levels were also increased at night, but the electric field-exposed animals had lower levels than the sham-exposed animals. Concurrent exposure to red light and the electric field or exposure to the electric field at a different time of the day-night period did not reduce melatonin synthesis. These data do not support the hypothesis that chronic electric field exposure reduces pineal melatonin synthesis in young adult male rats. However, serum melatonin levels were reduced by electric field exposure, suggesting the possibility that degradation or tissue uptake of melatonin is stimulated by exposure to electric fields. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Cadmium chloride in doses of 2, 12 and 40 mg Cd/kg was administered per os to pregnant rats from the 7th to 16th day of pregnancy. In another experiment female rats were exposed to cadmium oxide at a concentration of 0.02 mg Cd/m3 or 0.16 mg Cd/m3 for 5 hours a day and 5 days weekly for a period of 5 months or 1 mg Cd/m3 for 4 months. The exposure was then continued during mating and from the 1st to 20th day of pregnancy. A decrease in fertility was only observed in females exposed by inhalation to cadmium oxide at a concentration of 1 mg Cd/m3, at which concentration cadmium exhibits a considerable toxic effect on the whole organism. The young of females orally treated with CdCl2 in a dose of 40 mg Cd/kg displayed congenital defects in the form of sirenomelia or amelia, as well as raised cadmium levels in tissues. A retardation of intrauterine development manifested by lower body weight and slowed down osteogenesis was observed in the other groups. A cadmium concentration increase was not found in the tissues of the young in these groups. Inhalation exposure to 0.16 mg Cd/m3 of females prior to and during pregnancy induced in their young a decrease in viability, lower body weight gain, prolongation of latency in the negative-geotaxis test, lower locomotor activity and deteriorated development of the conditioned-reflex response. The offspring of females exposed to 0.02 mg Cd/m3 displayed lowered locomotor activity and worsened consolidation of the conditioned-reflex response.  相似文献   

17.
Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.  相似文献   

18.
It has been shown that rats, given the choice, will spend more time out of a 60-Hz electric field than in it at field strengths ? 75 kV/m. This paper describes research to examine the relevance of these data to a different species, the pig. Miniature pigs that had been exposed to a 60-Hz electric field at 30 kV/m for 20 h/day, 7 days/week for as long as 6 months, were tested for their preference for the presence or absence of the field during a 23.5-h period. Similar to earlier results with rats, miniature pigs spent more time out of the electric field than in it during the sleeping period.  相似文献   

19.
Body growth and circulating levels of hormones were assessed in young rats and rabbits exposed to a 50-Hz electric field of 50 kV/m. Eight-week-old male rats were exposed 8 h/day for 4 weeks and rabbits were exposed 16 h/day from the last 2 weeks of gestation to 6 weeks after birth. The body and the organ growth of exposed rats were not statistically different from those of sham-exposed controls. No important differences from controls were observed in plasma levels of corticosterone, TSH, ACTH, and T4 or in adrenal levels of epinephrine, norepinephrine, and corticosterone although T3 was slightly, but significantly, decreased. No large histological changes in the thyroid or adrenals were noted. In rabbits, organ and body weights of exposed animals were comparable to those of controls. Plasma levels of various hormones (ACTH, GH, T3, T4, corticosterone, cortisol), serum glucose, triglycerides, and cholesterol were not significantly altered. Adrenal content of cortisol was lower, however, in exposed rabbits. No histological changes of the thyroid or adrenal glands were observed.  相似文献   

20.
M Inouye 《Teratology》1979,20(3):353-364
Pregnant WKA/Hok rats were exposed to 100 R or 200 R X-irradiation on one of gestation days 16 through 21. Offspring were killed at 60 days of age and the cerebellum was examined. The cerebellum of animals exposed to 200 R was slightly reduced in weight but not in width. The observed reduction in the dorsoventral length of the cerebellum was more evident when the X-irradiation was early in gestation. The anteroposterior length of the hemispheres increased following exposure to X-ray on days 16 through 19, and that of the vermis and paravermis decreased following treatment on days 17 through 21. Therefore, the anterior portions of hemispheres were situated anterior to the culmen in every 200 R group. Somewhat anteroposteriorly and horizontally directed lobules, as opposed to the normal transverse arrangement, were seen in the cerebellum of rats treated on day 16 or 17. Lobule contortion and fragmentation and an increased number of sublobules were striking in cases treated later. Histologically, ectopic Purkinje cells in the granule cell layer and white matter appeared following X-irradiation on day 20 or 21, but they were not found following earlier treatment. In the cerebellum of animals exposed to 100 R the reduction in size was mild and the folial abnormalities were rare, but the number of sublobules decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号