首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of DNA-containing particles are released from lysozyme-produced Escherichia coli spheroplasts after gentle lysis with non-ionic detergents in 1.-0 m-NaCl. Lysis at 25 °C releases the folded chromosomes (1300 S to 2200 S particles). Lysis at 10 °C results in faster sedimenting structures (3000 S to 4000 S). Both types of particles coexist in extracts of cells lysed at intermediate temperatures, i.e. 15 °C.The 3000 S to 4000 S particles are folded chromosomes attached to membrane fragments; they contain membrane proteins and phospholipids in addition to the folded DNA and nascent RNA chains. Incubation of the membrane-attached chromosomes with 1% Sarkosyl releases the folded chromosomes; this Sarkosyl treatment removes the membrane proteins and phospholipids, and halves the sedimentation velocity of the particles, but has no effect on the folded DNA and nascent RNA chains.Membrane-attached chromosomes cannot be isolated from amino acid-starved cells which have completed their rounds of DNA replication; all of the DNA then appears as released folded chromosomes. After resumption of protein synthesis, chromosome attachment to the membrane precedes the initiation of DNA replication. Controls strongly suggest that the changes observed, i.e. the attachment and release from the membrane of the folded chromosome, are related to the act of DNA replication itself.  相似文献   

2.
C Lacombe  B Lubochinsky 《Biochimie》1977,59(11-12):877-884
Phospholipid analysis of the membranes associated with fast sedimenting folded chromosomes prepared by lysis of E. coli CR 34 shows that both inner and outer membranes are parts of the complex, in proportions not very different from that found in the whole bacteria. During the preparation of the folded chromosomes, the most recently synthesized molecules of phosphatidylglycerol and phosphatidylethanoamine are more sensitive to solubilisation, particularly those from the cytoplasmic membrane. Identification of a dominant fraction, the outer membrane, in some complexes, results from a preferential solubilization of the inner membrane. These results do not favor any specific association between the folded chromosome and the membranes.  相似文献   

3.
Phospholipid analysis of the membranes associated with fast sedimenting folded chromosomes prepared by lysis of E. coli CR 34 shows that both inner and outer membranes are parts of the complex, in proportions not very different from that found in the whole bacteria.During the preparation of the folded chromosomes, the most recently synthesized molecules of phosphatidylglycerol and phosphatidylethanoamine are more sensitive to solubilisation, particularly those from the cytoplasmic membrane. Identification of a dominant fraction, the outer membrane, in some complexes, results from a preferential solubilization of the inner membrane.These results do not favor any specific association between the folded chromosome and the membranes.  相似文献   

4.
Raymond Portalier  A. Worcel 《Cell》1976,8(2):245-255
Gentle lysis of E. coli cells in the presence of a DNA counterion (either 1.0 M NaCl or 5 mM spermidine) permits the isolation of the folded intact bacterial chromosome associated with membrane fragments. Most of the proteins in these chromosomes are also found in purified membrane preparations, and they can be identified as belonging to either the inner or the outer bacterial membrane.Ultraviolet irradiation of the membrane-attached chromosomes causes the formation of a stable complex between two inner membrane proteins (molecular weight 80,000 and 56,000 daltons) and 5-bromodeoxyuridine (BrdU)-substituted DNA. The photochemical attachment of BrdU-substituted DNA to specific membrane proteins suggests that these proteins may be bound to the DNA in vivo. Such DNA-membrane-binding proteins may have a role in the attachment of the folded chromosome to the bacterial envelope.  相似文献   

5.
Membrane-associated folded chromosomes isolated from Escherichia coli in the presence of spermidine sedimented at about 5,800S. The folded chromosome and the membrane fragment were each stable in the absence of the other; a 1,700S folded chromosome was obtained after removal of the membrane by a Sarkosyl treatment, and a 4,000S membrane fragment remained after digestion of the chromosomal DNA with deoxyribonuclease I. The interaction between the folded chromosome and the membrane fragment was stable, and, even when the DNA was unfolded, both components remained associated and cosedimented. The large frictional effect of the unfolded DNA reduced the sedimentation rate of the complex to about 2,000S. Partial removal of this unfolded DNA with restriction endonucleases caused the membrane fragments and the remaining associated DNA to sediment faster, at about 3,500S. The DNA remaining associated with the membrane fragments after restriction endonuclease treatment, about 4.5% of the total DNA when EcoRI was used, was indistinguishable from the DNA released from the membranes by three criteria: (i) DNA size distribution in agarose gels after electrophoresis, (ii) reassociation kinetics, and (iii) thermal elution from hydroxylapatite. This finding, that random DNA sequences rather than specific ones were responsible for the majority of the DNA-membrane interactions, argues against the folded chromosome's being a static structure with specific DNA sequences interacting with the cell envelope.  相似文献   

6.
The sedimentation properties of membrane-associated folded chromosomes prepared from Escherichia coli TAU-bar at 0 to 4 C were studied. Utilizing a modification of the procedure of Stonington and Pettijohn (1971), quantitative yields of membrane-associated folded chromosomes may be obtained. Folded chromosomes remained associated with the cell envelope during their replication and after completion of residual synthesis in the absence of required amino acids, as demonstrated by sedimentation velocities and the presence of high levels of cosedimenting protein. Membrane-associated folded chromosomes isolated from amino acid-starved cells sedimented more rapidly than membrane-associated folded chromosomes isolated from exponentially growing cells.  相似文献   

7.
Membrane-free folded chromosomes were purified from log-phase cultures of Escherichia coli and prepared for electron microscopy by aqueous (Kleinschmidt and Zahn) spreading. The appearance of the chromosomes depended on the salt concentrations in spreading. At certain salt concentration, the chromosomes resembled rosettes, with supercoiled loops of DNA radiating from a central core containing RNA. The rosettes support previous models deduced from physical studies of folded chromosomes. Apparently, cores contain must of the visible RNA, and the organization of the core is linked to the organization of the DNA loops.Submitted in celebration of Julius Marmur's birthday—his teachings made this study possible  相似文献   

8.
The effect of phenethyl alcohol on DNA synthesis was examined using several in vitro systems of Escherichia coli H560; i.e., ether-treated cells, membrane fractions and folded chromosomes fortified with DNA polymerase. In all systems, the incorporation of deoxyribonucleotides was much reduced for the phenethyl alcohol-treated cells compared with the non-treated cells. The total activity of DNA polymerases in polA1 cells (mostly DNA polymerase II) was not impaired for the phenethyl alcohol-treated cells and the reduction of the rate of DNA synthesis in vitro was ascribed to the reduction of the chromosomal template activity which was related to trypsin sensitive protein components. The analysis of chromosomes from the phenethyl alcohol-treated cells revealed the remarkable reduction of a protein component of molecular weight approx. 58 000 in contrast with a protein component of molecular weight approx. 30 000.  相似文献   

9.
An examination of the relationship of both nonreplicating and replicating forms of R6K plasmid DNA to the Escherichia coli folded chromosome showed that both forms cosediment with the chromosome in neutral sucrose gradients. Approximately 20% of the nonreplicatin molecules was found as freely sedimenting forms when the folded-configuration of the chromosomes was preserved. However, under the same conditions negligible amounts of the replicating forms were found as freely sedimenting molecules. Thus, it is concluded that the replicating forms, when compared with nonreplicating molecules, are preferentially associated with the folded chromosomal structure. Exposure of the folded chromosomal structure to RNase resulted in an unfolding of the chromosome and a concomitant increase in the amount of freely sedimenting replicating and nonreplicating forms of R6K DNA. Analyses of the single-stranded length of RNase-released nascent molecules suggest that they replicate in continuous association with the folded chromsome complex. Nonenzymatic unfolding of the chromosomes by progressively lowering the sodium ion concentration during lysis resulted in a progressive increase in the release of nonreplicating molecules. Replicating molecules wer not released by unfolding the chromosome in this fashion.  相似文献   

10.
The twin arginine translocation (Tat) system is a machinery which can translocate folded proteins across energy transducing membranes. Currently it is supposed that Tat substrates bind directly to Tat translocon components before a ApH-driven translocation occurs. In this review, an alternative model is presented which proposes that membrane integration could precede Tat-dependent translocation. This idea is mainly supported by the recent observations of Tat-independent membrane insertion of Tat substrates in vivo and in vitro. Membrane insertion may allow i) a quality control of the folded state by membrane bound proteases like FtsH, ii) the recognition of the membrane spanning signal peptide by Tat system components, and iii) a pulling mechanism of translocation. In some cases of folded Tat substrates, the membrane targeting process may require ATP-dependent N-terminal unfolding-steps.  相似文献   

11.
Summary Whole-mount preparations and thin sections of human interphase cells and metaphase chromosomes were examined by electron microscopy. Irregularly folded, 250 Å thick fibers, which is the basic substructure of inactive chromatin and mitotic chromosomes, were found to be firmly attached to the annuli of the inner nuclear membrane. At metaphase, fragments of the nuclear membrane were seen to adhere to the chromatids. Single fibers stretching out from the telomeres were observed connecting chromatids of nonhomologous chromosomes. A possible model of DNA replication at the nuclear pore complex is presented.
Zusammenfassung Totalpräparate und Dünnschnitte menschlicher Interphase-Zellen und Metaphase-Chromosomen wurden mit dem Elektronenmikroskop untersucht. Unregelmäßig gefaltete, 250 Å dicke Fäden bilden die Grundstruktur des inaktiven Chromatins und der Mitose-Chromosomen. Diese Fäden hängen in der Interphase an vielen Stellen fest an der inneren Kernmembran an den annuli der Kernporen. In der Metaphase sind häufig noch Reste der Kernmembran durch Fäden mit den Chromatiden verbunden. Einzelne, jeweill vom Telomer ausgehende Fäden verknüpfen Chromatide nichthomologer Chromosomen. Das Modell einer möglichen DNA-Replikation an den Poren der Kernmembran wird diskutiert.


Supported by a grant (La 185/3) of the Deutsche Forschungsgemeinschaft.  相似文献   

12.
Analysis of folded chromosomes prepared from amino acid-starved E. coli cells or from a dnaC initiation mutant indicates that a unique structure is associated with completion or near completion of rounds of chromosome replication in E. coli. Chromosomes remain associated with portions of the bacterial cell envelope throughout the DNA replication cycle, but become more rapidly sedimenting as replication proceeds in the absence of reinitiation. Before reinitiation of chromosome replication occurs after restoring required amino acids to amino acid-starved cells or after lowering the temperature in a thermosensitive dnaC mutant, sedimentation velocities of the membrane-associated folded chromosomes decrease substantially. The decrease in sedimentation velocity does not depend on renewed DNA synthesis, but does require the activity of at least the dnaC gene product.  相似文献   

13.
Kumar  Rajendra  Lizana  Ludvig  Stenberg  Per 《Chromosoma》2019,128(1):15-20
Chromosoma - The 3D organisation of the genome in interphase cells is not a randomly folded polymer. Rather, experiments show that chromosomes arrange into a network of 3D compartments that...  相似文献   

14.
Individual polytene chromosomes have been isolated from Chironomus stigmaterus for scanning electron microscope observations. The three dimensional ultrastructure of these chromosomes consists of a series of chromatin strands extended in the interbands and more tightly coiled or folded in the banded regions. The nucleolus is observed to be a dense disc or doughnut shaped structure surrounding the chromosome while the Balbiani Rings appear as diffuse regions consisting of both fibrillar and granular elements.  相似文献   

15.
How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30-nm chromatin fibres. Our comprehensive and quantitative study using cryo-electron microscopy and synchrotron X-ray scattering resolved the long-standing contradictions regarding the existence of 30-nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures.  相似文献   

16.
Targeting of proteins to and translocation across the membranes is a fundamental biological process in all organisms. In bacteria, the twin arginine translocation (Tat) system can transport folded proteins. Here, we demonstrate in vivo that the high potential iron-sulfur protein (HiPIP) from Allochromatium vinosum is translocated into the periplasmic space by the Tat system of Escherichia coli. In vitro, reconstituted HiPIP precursor (preHoloHiPIP) was targeted to inverted membrane vesicles from E. coli by a process requiring ATP when the Tat substrate was properly folded. During membrane targeting, the protein retained its cofactor, indicating that it was targeted in a folded state. Membrane targeting did not require a twin arginine motif and known Tat system components. On the basis of these findings, we propose that a pathway exists for the insertion of folded cofactor-containing proteins such as HiPIP into the bacterial cytoplasmic membrane.  相似文献   

17.
《Journal of molecular biology》2014,426(24):4139-4154
The overexpression of authentically folded eukaryotic membrane proteins in milligramme quantities is a fundamental prerequisite for structural studies. One of the most commonly used expression systems for the production of mammalian membrane proteins is the baculovirus expression system in insect cells. However, a detailed analysis by radioligand binding and comparative Western blotting of G protein-coupled receptors and a transporter produced in insect cells showed that a considerable proportion of the expressed protein was misfolded and incapable of ligand binding. In contrast, production of the same membrane proteins in stable inducible mammalian cell lines suggested that the majority was folded correctly. It was noted that detergent solubilisation of the misfolded membrane proteins using either digitonin or dodecylmaltoside was considerably less efficient than using sodium dodecyl sulfate or foscholine-12, whilst these detergents were equally efficient at solubilising correctly folded membrane proteins. This provides a simple and rapid test to suggest whether heterologously expressed mammalian membrane proteins are indeed correctly folded, without requiring radioligand binding assays. This will greatly facilitate the high-throughput production of fully functional membrane proteins for structural studies.  相似文献   

18.
Physiocochemical evidence presented indicates plasmid deoxyribonucleic acid (DNA) can associate with host chromosome without linear insertion of the former into the latter. This conclusion is based on the observation that covalently closed circular (CCC) plasmid DNA can cosediment with undegraded host chromosome in a neutral sucrose gradient. When F plus bacteria are lysed under conditions that preserve chromosome, approximately 90% of CCC F sex factor plasmid (about 1% of the total DNA) is found in folded chromosomes sedimenting at rates between 1,500 and 4,000s. The remaining 10% of the CCC F DNA sediments at the rate (80S) indicative of the free CCC plasmid form. Reconstruction experiments in which 80S, CCC F DNA is added to F plus or F minus bacteria before cell lysis show that exogenous F DNA does not associate with folded chromosomes. In F plus bacteria, F plasmid is harbored at a level of one or two copies per chromosomal equivalent. In bacteria producing colicin E1, the genetic determinant of this colicin, the Col E1 plasmid, is harbored at levels of 10 to 13 copies per chromosomal equivalent; yet, greater than 90% of these plasmids do not cosediment with the 1,800S species of folded chromosome. However, preliminary evidence suggests one or two Col E1 plasmids may associate with the 1,800S folded chromosome. Based on evidence presented in this and other papers, we postulate F plasmid can link to folded chromosome because the physicochemical structure of the plasmid resembles a supercoiled region of the chromosome and, therefore, is able to interact with the ribonucleic acid that stabilizes the folded chromosome structure. Implications of this model for F plasmid replication and segregation are discussed.  相似文献   

19.
Analysis of folded chromosomes in cells under standard sporulation conditions shows that the g0 form of the folded genome is used as the entry into meiosis. Premeiotic DNA replication is initiated from the g0 structure. In contrast, mitotic DNA replication is preceded by a characteristic pre-replicative form, g1. Nonetheless, the mitotic and meiotic replication structures are indistinguishable by sedimentation. Preliminary evidence also suggests that the meiotic equivalent of the mitotic post-replicative structure, g2, is absent. In strains homozygous for the mating type locus, aa and αα, meiotic replicating structures are not detected, and the folded chromosomes remain in a non-cycling form. However, this non-cycling form is distinguishable from the g0 form of . cells.  相似文献   

20.
Misfolded proteins retained in the endoplasmic reticulum (ER) are degraded by the ER-associated degradation pathway. The mechanisms used to sort them from correctly folded proteins remain unclear. Analysis of substrates with defined folded and misfolded domains has revealed a system of sequential checkpoints that recognize topologically distinct domains of polypeptides. The first checkpoint examines the cytoplasmic domains of membrane proteins. If a lesion is detected, it is retained statically in the ER and rapidly degraded without regard to the state of its other domains. Proteins passing this test face a second checkpoint that monitors domains localized in the ER lumen. Proteins detected by this pathway are sorted from folded proteins and degraded by a quality control mechanism that requires ER-to-Golgi transport. Although the first checkpoint is obligatorily directed at membrane proteins, the second monitors both soluble and membrane proteins. Our data support a model whereby "properly folded" proteins are defined biologically as survivors that endure a series of distinct checkpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号