首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
Zhang J  Wu MD  Li GQ  Yang L  Yu L  Jiang DH  Huang HC  Zhuang WY 《Mycologia》2010,102(5):1114-1126
The current study was conducted to identify Botrytis spp. isolated from symptomatic broad bean plants grown in Hubei Province, China. Among 184 Botrytis strains, three distinct species, B. cinerea, B. fabae and a previously undescribed Botrytis sp., were identified based on morphology of colonies, sclerotia and conidia. The novel Botrytis sp. is described herein as a new species, Botrytis fabiopsis sp. nov. At 20 C B. fabiopsis grew on potato dextrose agar (PDA) at 12-13 mm d(-1), similar to B. fabae (13 mm d(-1)), but slower than B. cinerea (17-19 mm d(-1)). It formed pale gray colonies with short aerial mycelia and produced gray to black sclerotia in concentric rings on PDA. B. fabiopsis produced greater numbers of sclerotia than B. cinerea but fewer than B. fabae. Conidia produced by B. fabiopsis on broad bean leaves are hyaline to pale brown, elliptical to ovoid, wrinkled on the surface and are larger than conidia of B. fabae and B. cinerea. Phylogenetic analysis based on combined DNA sequence data of three nuclear genes (G3PDH, HSP60 and RPB2) showed that B. fabiopsis is closely related to B. galanthina, the causal agent of gray mold disease of Galanthus sp., but distantly related to B. fabae and B. cinerea. Sequence analysis of genes encoding necrosis and ethylene-inducing proteins (NEPs) indicated that B. fabiopsis is distinct from B. galanthina. Inoculation of broad bean leaves with conidia of B. fabiopsis caused typical chocolate spot symptoms with a similar disease severity to that caused by B. fabae but significantly greater than that caused by B. cinerea. This study suggests that B. fabiopsis is a new causal agent for chocolate spot of broad bean.  相似文献   

2.
The fungus Botrytis cinerea has been widely accepted as the species responsible for causing gray mold decay of apple, although a second species causing apple decay, B. mali, was reported in 1931. Botrytis mali was validly published in 1931, nevertheless it has always been considered a doubtful species. To study the relationship of Botrytis isolates causing gray mold on apple, DNA sequence analysis was employed. Twenty-eight Botrytis isolates consisting of 10 species were sampled, including two B. mali herbarium specimens from apple originally deposited in 1932. The DNA sequence analysis of the beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) genes placed the isolates into groupings with defined species boundaries that generally reflected the morphologically based model for Botrytis classification. The B. cinerea isolates from apple and other host plants were placed in a single clade. The B. mali herbarium specimens however always fell well outside that clade. The DNA sequence analysis reported in this study support the initial work by Ruehle (1931) describing the apple pathogen B. mali as a unique species.  相似文献   

3.
4.
One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates.  相似文献   

5.
6.
Botrytis cinerea, or gray mold, is a necrotrophic fungal pathogen of hundreds of plant species. The genetic diversity of B. cinerea may contribute to its broad host range; however, the level and structure of genetic variation at pathogenesis-associated loci has not been described. B. cinerea possesses six distinct cell-wall-degrading polygalacturonases (PGs), enzymes of demonstrated importance to pathogenesis and interaction with host plant defenses. Sequencing a collection of 34 B. cinerea isolates at three PG-encoding loci, BcPG1, BcPG2, and BcPG3, revealed limited evidence of host-mediated genetic subdivision within loci, yet suggested differences in the action of evolutionary forces among loci. BcPG1 and BcPG2 are highly polymorphic, particularly when compared with previously published data from nonpathogenicity loci, whereas BcPG3 is relatively conserved. Sequence variation at BcPG1 and BcPG2 did not appear to be associated with virulence on Arabidopsis leaves; however, BcPG2 variation showed a statistically significant association with growth rate on pectin. Rather than providing evidence for host-mediated genetic subdivision at individual PG loci, our data support specialization among PGs and the potential diversification of PGs interacting directly with host defenses.  相似文献   

7.
Raspberry bushy dwarf virus (RBDV), recently renamed to Idaeovirus rubi, is one of the most common viruses infecting Rubus species worldwide but there is still a limited number of genome sequences available in the GenBank database and the majority of the sequences include partial sequences of RNA-1 and RNA-2. The distribution and incidence of RBDV in main raspberry and blackberry growing provinces in Turkey were monitored during 2015–2019 and 537 Rubus spp. samples were tested by both DAS-ELISA and RT-PCR. Among the tested samples, 36 samples tested positive for RBDV by DAS-ELISA and 67 samples by RT-PCR. There was relatively low nucleotide diversity among the Turkish isolates. Turkish isolates shared 93%–97.7%, 84.3%–98.9%, and 85%–99.2% nucleotide sequence identities with available sequences in the GenBank, in partial RNA-1, movement protein (MP) and coat protein (CP) genes, respectively. In the phylogenetic tree constructed for RNA-1, MP, and CP sequences, all Turkish raspberry isolates were clustered in a distinct clade. However, the blackberry isolates showed considerable variation in nucleotide sequences and were placed in three distinct groups. The divergent blackberry isolates showed high variability in MP (84.5%–89.3%) and CP (85.5%–89.7%) regions and were placed in a distinct group. The rest of blackberry isolates clustered together with sweet cherry RBDV isolates adjacent to the grapevine clade or together with raspberry isolates. The comparative analysis conducted on three RNA segments of RBDV highlighted the high sequence diversity of Turkish RBDV isolates. This study also emphasizes the importance of regular monitoring of RBDV infections in Turkey, with special regard to those Rubus spp. and grapevine accessions employed in conservation and selection programmes. In particular, the presence of new RBDV genetic variants and infection of Rubus species must be taken into account to choose a correct detection protocol and management strategy.  相似文献   

8.
The diversity of a collection of 21 bradyrhizobial isolates from Lima bean (Phaseolus lunatus L.) was assayed by molecular methods. Moderately high to high genetic diversity was revealed by multilocus enzyme electrophoresis (MLEE) analysis of seven enzyme loci and genomic fingerprints with ERIC and BOX primers. Two groups with differences in growth rate were found among the isolates and their differentiation as two divergent bradyrhizobial lineages was supported by PCR-RFLP of the rpoB gene and sequence analysis of the 16S rDNA and dnaK genes. Isolates with slow growth (SG) were identified as Bradyrhizobium yuanmingense, while extra-slow growing isolates (ESG) constitute a new lineage different from all described Bradyrhizobium species. Three distinct symbiotic genotypes were detected among Lima bean bradyrhizobia by PCR-RFLP and sequence analysis of the nifH and nodB genes. One genotype was found in the ESG lineage and two in B. yuanmingense. Another symbiotic genotype was detected in B. yuamingense isolated from Lespedeza plants. The identified bradyrhizobial lineages constitute sympatric species effectively nodulating Lima bean on the coast of Peru.  相似文献   

9.
A hexapeptide of amino acid sequence Ac-Arg-Lys-Thr-Trp-Phe-Trp-NH2 was demonstrated to have antimicrobial activity against selected phytopathogenic fungi that cause postharvest decay in fruits. The peptide synthesized with either all D- or all L-amino acids inhibited the in vitro growth of strains of Penicilium italicum, P. digitatum, and Botrytis cinerea, with MICs of 60 to 80 microM and 50% inhibitory concentration (IC50) of 30 to 40 microM. The inhibitory activity of the peptide was both sequence- and fungus-specific since (i) sequence-related peptides lacked activity (including one with five residues identical to the active sequence), (ii) other filamentous fungi (including some that belong to the genus Penicllium) were insensitive to the peptide's antifungal action, and (iii) the peptide did not inhibit the growth of several yeast and bacterial strains assayed. Experiments on P. digitatum identified conidial germination as particularly sensitive to inhibition although mycelial growth was also affected. Our findings suggest that the inhibitory effect is initially driven by the electrostatic interaction of the peptide with fungal components. The antifungal peptide retarded the blue and green mold diseases of citrus fruits and the gray mold of tomato fruits under controlled inoculation conditions, thus providing evidence for the feasibility of using very short peptides in plant protection. This and previous studies with related peptides indicate some degree of peptide amino acid sequence and structure conservation associated with the antimicrobial activity, and suggest a general sequence layout for short antifungal peptides, consisting of one or two positively charged residues combined with aromatic amino acid residues.  相似文献   

10.
The ability of yeasts to attach to hyphae or conidia of phytopathogenic fungi has been speculated to contribute to biocontrol activity on plant surfaces. Attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa was determined using in vitro attachment assays. Yeasts were incubated for 2 d on potato dextrose agar (PDA) prior to experimentation. A total of 292 yeasts cultured on PDA were screened for their ability to attach to conidia of B. cinerea; 260 isolates (89.1%) attached to conidia forming large aggregates of cells, and 22 isolates (7.5%) weakly attached to conidia with 1 or 2 yeast cells attached to a few conidia. Ten yeasts (3.4%), including 8 isolates of Cryptococcus laurentii, 1 isolate of Cryptococcus flavescens, and an unidentified species of Cryptococcus, failed to attach to conidia. All non-attaching yeasts produced copious extracellular polysaccharide (EPS) on PDA. Seventeen yeast isolates did not attach to hyphal fragments of B. cinerea, R. solani, and S. homoeocarpa after a 1 h incubation, but attachment was observed after 24 h. Culture medium, but not culture age, significantly affected the attachment of yeast cells to conidia of B. cinerea. The 10 yeast isolates that did not attach to conidia when grown on agar did attach to conidia (20%-57% of conidia with attached yeast cells) when cultured in liquid medium. Attachment of the biocontrol yeast Rhodotorula glutinis PM4 to conidia of B. cinerea was significantly greater at 1 x 10(7) yeast cells x mL(-1) than at lower concentrations of yeast cells. The ability of yeast cells to attach to fungal conidia or hyphae appears to be a common phenotype among phylloplane yeasts.  相似文献   

11.
The inhibitory effect of heat treatment (HT) on Botrytis cinerea, a major postharvest fungal pathogen, and the possible mode of action were investigated. Spore germination and germ tube elongation of B. cinerea were both increasingly and significantly inhibited by HT (43 °C) for 10, 20 or 30 min. HT-induced gene expression of NADPH oxidase A, resulted in the intracellular accumulation of reactive oxygen species. HT-treated B. cinerea spores exhibited higher levels of oxidative damage to proteins and lipids, compared to the non-HT control. These findings indicate that HT resulted in oxidative damage which then played an important role in the inhibitory effect on B. cinerea. In the current study, HT was effective in controlling gray mold, caused by B. cinerea, in pear fruits. Understanding the mode of action by which HT inhibits fungal pathogens will help in the application of HT for management of postharvest fungal diseases of fruits and vegetables.  相似文献   

12.
Gray mold, caused by Botrytis cinerea, is an important strawberry disease. As gray mold control is difficult, there is a need to evaluate integrated methods to successfully manage the disease. The efficiency of integrating Clonostachys rosea sprays, fungicide sprays, and crop debris removal to manage gray mold was evaluated in field experiments conducted in 2006 and 2007. Leaf colonization by C. rosea (LAC), average number of B. cinerea conidiophores (ANC), gray mold incidence in both flowers (Iflower) and fruits (Ifruit), and yield were evaluated weekly. In both years, LAC was higher in the treatments with no fungicide. When compared to the check, ANC, Iflower and Ifruit were most reduced in treatments that included C. rosea sprays. Maximal reductions were achieved with the combination of C. rosea sprays, fungicide sprays and debris removal (96.62%, 86.54% and 65.33% reductions of ANC, Iflower and Ifruit, respectively). Otherwise, maximal yield (103.14% increase as compared to the check) was achieved with the combination of the three treatments. With just C. rosea sprays, ANC, Iflower and Ifruit were reduced by 92.01%, 68.48% and 65.33%, respectively, whereas yield was increased by 75.15%. Considering the individual effects, application of C. rosea was the most efficient treatment. Chemical control was effective only in plots without debris removal. Elimination of crop debris was the least effective method in reducing gray mold incidence in both flowers and fruits. The integrated control approach enhanced the efficacy of the individual methods of gray mold control and provided high strawberry yield. An important component of this integrated approach it the biological control with C. rosea.  相似文献   

13.
14.
Trichokonins (TKs) are antimicrobial peptaibols extracted from Trichoderma pseudokoningii strain SMF2. In this paper, it was discovered that TK VI, the main active ingredient of TKs, had a profound inhibitory effect on the growth and sporulation of the moth orchid gray mold, Botrytis cinerea. In addition, TK VI increased the cell membrane permeability of the pathogen. Further investigation of nuclear DNA fragmentation, subcellular structure disintegration, and mitochondrial membrane potential depolarization, as well as the appearance of reactive oxygen species, indicated that TK VI could induce programmed cell death in the necrotrophic pathogenic fungus B. cinerea.  相似文献   

15.
Botrytis cinerea is an economically important fungal pathogen with a host range of over 200 plant species. Unfortunately, gray mold disease caused by B. cinerea has not been effectively controlled because of its high risk for fungicide resistance development. As a part of our ongoing efforts to develop novel sulfonamides as agricultural fungicides against Botrytis cinerea, we introduced 2-aminoethanesulfonic acid (taurine) substructure, designed and synthesized a series of novel 2-substituted acylaminoethylsulfonamides. The newly synthesized sulfonamides were evaluated in vitro and in vivo for their fungicidal activity against Botrytis cinerea, of which the 2-ethoxyacetylamide derivative (V-A-12, EC50 = 0.66 mg·L−1) exhibited the highest potency in vitro and superior fungicidal activity compared with procymidone (EC50 = 1.06 mg·L−1). In vivo bioassay indicated that compound V-A-12 could be effective for the control of tomato gray mold. Moreover, the structure-activity relationship of these sulfonamides was analyzed by establishing a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, which can provide guidance for the development of sulfonamides as fungicides. Finally, the effeicacy of sulfonamide derivatives was again verified in the activity evaluation against resistant Botrytis cinerea strains. These results further enhance the development value of 2-substituted acylaminoethylsulfonamides to control the tomato gray mold.  相似文献   

16.
Botrytis cinerea is one of the most important pathogens worldwide, causing gray mold on a large variety of crops. Botrytis pseudocinerea has been found previously to occur together with B. cinerea in low abundance in vineyards and strawberry fields. Here, we report B. pseudocinerea to be common and sometimes dominant over B. cinerea on several fruit and vegetable crops in Germany. On apples with calyx end rot and on oilseed rape, it was the major gray mold species. Abundance of B. pseudocinerea was often negatively correlated with fungicide treatments. On cultivated strawberries, it was frequently found in spring but was largely displaced by B. cinerea following fungicide applications. Whereas B. cinerea strains with multiple-fungicide resistance were common in these fields, B. pseudocinerea almost never developed resistance to any fungicide even though resistance mutations occurred at similar frequencies in both species under laboratory conditions. The absence of resistance to quinone outside inhibitors in B. pseudocinerea was correlated with an intron in cytB preventing the major G143A resistance mutation. Our work indicates that B. pseudocinerea has a wide host range similar to that of B. cinerea and that it can become an important gray mold pathogen on cultivated plants.  相似文献   

17.
Mycoviruses are obligate species that are found throughout all subdivisions of the fungal kingdom, with more constantly being discovered. However, only limited information is available about their mode of transmission and distribution. This research describes the distribution and sequence diversity of the Botrytis virus F (BotV-F) mycovirus from a survey of 84 Botrytis cinerea isolates collected from New Zealand and around the world. Using an RT-PCR approach, 12 BotV-F positive isolates were discovered, but there was no correlation to either plant host or geographic region from which the fungus was isolated. Subsequent phylogenetic analysis of BotV-F sequences suggest that this mycovirus has had a long association with B. cinerea, and has been co-distributed worldwide as B. cinerea has spread. In addition, these results suggest that the B. cinerea vegetative incompatibility mechanism may not completely prevent transmission of mycoviruses like BotV-F between fungal isolates from different compatibility groups. The potential utility of mycovirus sequence analysis to studies of fungal populations is discussed.  相似文献   

18.
The red light-induced antifungal substance(s) produced in broad bean was of relatively high molecular weight, water soluble, heat stable and fungi specific. Cellulose thin layer chromatography (TLC) of infection droplets of Botrytis cinerea or water droplets without spores of B. cinerea, recovered from inoculated broad bean leaflets kept under red light for 48 h, displayed inhibition zones at approximate Rf values of 0.0 and 0.6. Inhibition zones observed in cellulose TLC of water droplets were relatively faint compared to those of infection droplets. In a time-course study of accumulation of the antifungal substance(s), antifungal activity in both water and infection droplets recovered from red light irradiated broad bean leaflets occurred after 24 h irradiation. However, the antifungal activity in infection droplets was significantly higher than in water droplets. The antifungal substance(s) was less active against Botrytis fabae than B. cinerea.  相似文献   

19.
Fournier E  Giraud T  Albertini C  Brygoo Y 《Mycologia》2005,97(6):1251-1267
In micro-organisms biodiversity is often underestimated because relevant criteria for recognition of distinct evolutionary units are lacking. Phylogenetic approaches have been proved the most useful in fungi to address this issue. Botrytis cinerea, a generalist fungus causing gray mold, illustrates this problem. It long has been thought to be a single variable species. Recent population genetics studies have shown that B. cinerea is a species complex. However conflicting partitions were proposed. To identify the most relevant partitions within the B. cinerea complex we used a multiple-gene genealogies approach. We sequenced portions of four nuclear genes, of which genealogies congruently clustered into two well supported groups corresponding to Groups I and II previously described, indicating that they represent phylogenetic species. Estimates of migration rates and genetic differentiation showed that these groups had been isolated for a long time, without detectable gene flow. This was confirmed by the high number of polymorphic sites fixed within each group. The genetic diversity was lower within Group I, as revealed by DNA polymorphism and vegetative incompatibility tests. Groups I and II exhibited phenotypic differences in their phenology, host range, size of asexual spores and vegetative compatibility. All these morphological and molecular aspects suggest that B. cinerea Groups I and II may be different cryptic species, isolated for a long time. Phylogenies and molecular analyzes of variance revealed no genetic structure according to the other suggested partitions for the B. cinerea complex (i.e., among host plants, between strains with and without transposable elements, nor between strains responsible for noble rot and gray mold. This suggests that recombination regularly occurs, or occurred until recently, within B. cinerea Group II. This also was supported by recombination rates at each locus. Multiple-gene genealogies showed their utility by providing a relevant partition criterion for the B. cinerea complex.  相似文献   

20.
由灰葡萄孢(Botrytis cinerea)引起的灰霉病是番茄生产中最重要的病害之一,当前使用的杀菌剂因药物残留、病原菌抗药性及食品安全等原因逐渐受到限制。因此,利用拮抗微生物的生物防治逐渐成为灰霉病防控的有效策略。【目的】从番茄植株体内筛选具有抗病促生特性内生菌株并对其生防潜力进行评估,为开发番茄灰霉病生物防治新策略提供理论依据。【方法】采用组织分离法在番茄植株不同部位分离出内生细菌、真菌,结合16SrRNA和ITS序列分析,对候选菌株进行初步鉴定;通过菌株对峙培养、果实离体接种筛选对灰葡萄孢具有拮抗活性的内生菌;进一步测定菌株分泌生长素、嗜铁素的能力及其对拟南芥和番茄幼苗生长的促生特性。【结果】从番茄植株不同部位共分离出72株内生细菌和31株内生真菌,通过平板对峙法筛选出1株对多种病原菌具有较好抑菌活性的内生细菌FQ-G3,分子鉴定为Bacillus velezensis。FQ-G3对灰葡萄孢抑菌率达80.93%,并显著抑制灰葡萄孢在番茄果实上的扩展。该菌株能够分泌生长素、蛋白酶和嗜铁素,且对拟南芥、番茄幼苗具有明显的促生效果。【结论】本研究表明分离自番茄植株的内生菌FQ-G3具...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号