首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced glycation end products (AGEs) from the Maillard reaction contribute to protein aging and the pathogenesis of age- and diabetes-associated complications. The alpha-dicarbonyl compound methylglyoxal (MG) is an important intermediate in AGE synthesis. Recent studies suggest that pyridoxamine inhibits formation of advanced glycation and lipoxidation products. We wanted to determine if pyridoxamine could inhibit MG-mediated Maillard reactions and thereby prevent AGE formation. When lens proteins were incubated with MG at 37 degrees C, pH 7.4, we found that pyridoxamine inhibits formation of methylglyoxal-derived AGEs concentration dependently. Pyridoxamine reduces MG levels in red blood cells and plasma and blocks formation of methylglyoxal-lysine dimer in plasma proteins from diabetic rats and it prevents pentosidine (an AGE derived from sugars) from forming in plasma proteins. Pyridoxamine also decreases formation of protein carbonyls and thiobarbituric-acid-reactive substances in plasma proteins from diabetic rats. Pyridoxamine treatment did not restore erythrocyte glutathione (which was reduced by almost half) in diabetic animals, but it enhanced erythrocyte glyoxalase I activity. We isolated a major product of the reaction between MG and pyridoxamine and identified it as methylglyoxal-pyridoxamine dimer. Our studies show that pyridoxamine reduces oxidative stress and AGE formation. We suspect that a direct interaction of pyridoxamine with MG partly accounts for AGE inhibition.  相似文献   

2.
3.
Epidemiological studies have confirmed that hyperglycemia is the most important factor in the onset and progress of vascular complications, both in Type 1 and 2 diabetes mellitus. The formation of advanced glycation end-products (AGEs) correlates with glycemic control. The AGE hypothesis proposes that accelerated chemical modification of proteins by glucose during hyperglycemia contributes to the pathogenesis of diabetic complications including nephropathy, retinopathy, neuropathy and atherosclerosis. Recent studies have shown that increased formation of serum AGEs exists in diabetic children and adolescents with or without vascular complications. Furthermore, the presence of diabetic complications in children correlates with elevated serum AGEs. The level of serum AGEs could be considered as a marker of later developments of vascular complications in children with Type 1 and 2 diabetes mellitus. The careful metabolic monitoring of young diabetics together with monitoring of serum AGEs can provide useful information about impending AGE-related diabetic complications. It is becoming clear that anti-AGE strategies may play an important role in the treatment of young and older diabetic patients. Several potential drug candidates such as AGE inhibitors have been reported recently.  相似文献   

4.
The reactive advanced glycation end product (AGE) precursor methylglyoxal (MGO) and MGO-derived AGEs are associated with diabetic vascular complications and also with an increase in oxidative stress. Glyoxalase-I (GLO-I) transgenic rats were used to explore whether overexpression of this MGO detoxifying enzyme reduces levels of AGEs and oxidative stress in a rat model of diabetes. Rats were made diabetic with streptozotocin, and after 12 weeks, plasma and multiple tissues were isolated for analysis of AGEs, carbonyl stress, and oxidative stress. GLO-I activity was significantly elevated in multiple tissues of all transgenic rats compared with wild-type (WT) littermates. Streptozotocin treatment resulted in a 5-fold increase in blood glucose concentrations irrespective of GLO-I overexpression. Levels of MGO, glyoxal, 3-deoxyglucosone, AGEs, and oxidative stress markers nitrotyrosine, malondialdehyde, and F2-isoprostane were elevated in the diabetic WT rats. In diabetic GLO-I rats, glyoxal and MGO composite scores were significantly decreased by 81%, and plasma AGEs and oxidative stress markers scores were significantly decreased by ~50%. Hyperglycemia induced a decrease in protein levels of the mitochondrial oxidative phosphorylation complex in the gastrocnemius muscle, which was accompanied by an increase in the lipid peroxidation product 4-hydroxy-2-nonenal, and this was counteracted by GLO-I overexpression. This study shows for the first time in an in vivo model of diabetes that GLO-I overexpression reduces hyperglycemia-induced levels of carbonyl stress, AGEs, and oxidative stress. The reduction of oxidative stress by GLO-I overexpression directly demonstrates the link between glycation and oxidative stress.  相似文献   

5.
Clinical studies have shown a relationship between diabetic retinopathy and vascular endothelial growth factor (VEGF) levels in ocular fluid. Advanced glycation end products (AGEs) have been implicated in diabetes complications, including diabetic retinopathy. Nepsilon-(carboxymethyl) lysine (CML) is a glycoxidation product that may be a marker of oxidative stress. In this study, we used enzyme-linked immunosorbent assays to determine the levels of VEGF, non-CML AGE and CML in the aqueous humor and serum of 82 Japanese patients with type 2 diabetes and 60 non-diabetic subjects. VEGF, non-CML AGE, and CML concentrations in aqueous humor and serum were then compared with the severity of diabetic retinopathy. Immunohistochemical detection analysis of non-CML AGE and CML was also performed using retinal tissues from patients with progressive diabetic retinopathy. Aqueous levels of VEGF, non-CML AGE and CML increased along with the progression of diabetic retinopathy compared to age-matched controls. After coagulation therapy, the VEGF, non-CML AGE, and CML levels were significantly reduced. Immunostaining showed diffuse co-localization of non-CML AGE and CML around microvessels and in the glial cells of proliferative membranes from patients with progressive diabetic retinopathy. These findings suggest that glycation and glycoxidation reactions (or oxidation, as revealed by CML) may contribute to both the onset and progression of diabetic retinopathy.  相似文献   

6.
Methylglyoxal (MG), a highly reactive metabolite of glucose, causes non-enzymatic glycation of proteins to form irreversible advanced glycation endproducts (AGEs). The present study investigated whether methylglyoxal induced oxidative stress and activated nuclear factor kappa B (NF-kappaB) in freshly isolated and cultured smooth muscle cells (SMCs) from rat mesenteric artery. The treatment of cells with MG (50 or 100 micromol/L) induced a significant increase in AGE formation and oxidation of DCF. MG-enhanced generation of AGEs and the oxidation of DCF was markedly inhibited by antioxidant n-acetylcysteine (NAC, 600 micromol/L). MG at a concentration of 100 micromol/L increased the heme-oxygenase-1 expression in these cells. Moreover, MG activated NF-kappaB p65, indicated by an increased immuno cytochemistry stain for NF-kappaB p65 located in the nucleus after the treatment of mesenteric artery SMCs with MG. MG-induced activation of NF-kappaB p65 was inhibited by NAC. In summary, MG significantly increases oxidative stress and activates NF-kappaB p65 in mesenteric artery SMCs. The pro-oxidant role of methylglyoxal may contribute to various pathological changes of SMCs from resistance arteries.  相似文献   

7.
Li SY  Sigmon VK  Babcock SA  Ren J 《Life sciences》2007,80(11):1051-1056
Accumulation of advanced glycation endproduct (AGE) has been implicated in the pathogenesis of diabetic complications. However, the precise role and mechanism behind AGE-associated diabetic heart injury are not fully clear. This study was designed to evaluate the effect of AGE on accumulation of reactive oxygen species (ROS), apoptosis, mitogen-activated protein kinase (MAPK) activation and nuclear O-GlcNAcylation in fetal human cardiac myocytes. Myocytes were maintained for 24-72 h in a defined culture medium containing high glucose, the AGE carbon precursor methylglyoxal (MG), and MG-AGE derived from MG and bovine serum albumin (BSA). Generation of ROS was detected by 5-(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate. Apoptosis was evaluated by caspase-3 activity and quantitative DNA fragmentation. Both high glucose (25.5 mM) and MG (200 microM) significantly enhanced ROS and AGE formation with greater effects elicited by MG. Both high glucose and MG-AGE significantly facilitated apoptosis with a more predominant effect from MG-AGE. In addition, phosphorylation of MAPK cascade [extracellular signal-regulated kinase-1/2 (ERK1/2) and p38] and nuclear O-GlcNAcylation were enhanced in MG-AGE-treated myocytes, similar to those elicited by high glucose. MG-AGE-induced phosphorylation of ERK1/2 and p38 was nullified by neutralizing AGE with specific anti-AGE antibody but not nonspecific antiserum. Collectively, these results indicated that AGE or its precursor MG may trigger ROS generation, apoptosis, MAPK activation and nuclear O-GlcNAcylation in human cardiac myocytes, in a manner reminiscent of high extracellular glucose.  相似文献   

8.
Soluble RAGE in type 2 diabetes: association with oxidative stress   总被引:1,自引:0,他引:1  
Advanced glycation end products (AGEs) contribute to diabetic vascular complications by engaging the AGE receptor (RAGE). A soluble RAGE form (sRAGE) acts as a decoy domain receptor, thus decreasing AGE cellular binding. A cross-sectional comparison of sRAGE, asymmetric dimethylarginine (ADMA) plasma levels (index of endothelial dysfunction), and urinary 8-iso-prostaglandin (PG)F(2alpha) (marker of oxidative stress) was performed between 86 diabetic patients and 43 controls. Plasma sRAGE levels were significantly lower and ADMA levels were significantly higher in diabetic patients as compared to controls (P<0.0001). HbA1c and urinary 8-iso-PGF(2alpha) were correlated inversely with sRAGE and directly with ADMA. On multivariate analysis HbA1c was independently related to sRAGE levels in diabetic patients. Twenty-four of 86 patients with newly diagnosed diabetes and 12 patients in poor metabolic control were reevaluated after treatment with a hypoglycemic agent or insulin, respectively. Improvement in metabolic control by oral agents or insulin resulted in a significant increase in sRAGE and decrease in ADMA levels (P<0.0001). Thus, poor glycemic control reduces sRAGE levels, in association with enhanced oxidative stress and endothelial dysfunction in diabetes. These abnormalities are susceptible to modulation by improvement in metabolic control.  相似文献   

9.
Advanced glycation end products (AGEs) are involved in bone quality deterioration in diabetes mellitus. We previously showed that AGE2 or AGE3 inhibited osteoblastic differentiation and mineralization of mouse stromal ST2 cells, and also induced apoptosis and decreased cell growth. Although quality management for synthesized proteins in endoplasmic reticulum (ER) is crucial for the maturation of osteoblasts, the effects of AGEs on ER stress in osteoblast lineage are unknown. We thus examined roles of ER stress in AGE2- or AGE3-induced suppression of osteoblastogenesis of ST2 cells. An ER stress inducer, thapsigargin (TG), induced osteoblastic differentiation of ST2 cells by increasing the levels of Osterix, type 1 collagen (Col1), alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA. AGE2 or AGE3 suppressed the levels of ER stress sensors such as IRE1α, ATF6 and OASIS, while they increased the levels of PERK and its downstream molecules, ATF4. A reduction in PERK level by siRNA did not affect the AGEs-induced suppression of the levels of Osterix, Col1 and OCN mRNA. In conclusion, AGEs inhibited the osteoblastic differentiation of stromal cells by suppressing ER stress sensors and accumulating abnormal proteins in the cells. This process might accelerate AGEs-induced suppression of bone formation found in diabetes mellitus.  相似文献   

10.
Advanced glycation end products (AGEs) play a causative role in the complications involved with diabetes mellitus (DM). Nowadays, DM with hypothyroidism (DM-hypothyroidism) is indicative of an ascended tendency in the combined morbidity. In this study, we examine the role of the receptor (RAGE) played for AGEs in thyroid hormone (TH) secretion via the silent information regulator 1 (SIRT1)/nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) pathway. Blood samples were collected from patients with type 2 DM (T2DM)-hypothyroidism and from patients with T2DM, followed by detection of serum AGEs level. The underlying regulatory mechanisms of RAGE were analyzed in association with the treatment of high glucose, siRNA against RAGE, AGE, SIRT1, or Nrf2 vector in normal immortalized thyroid Nthy-ori 3-1 cells. Serum of patients with T2DM-hypothyroidism indicated promoted levels of AGEs vs those with just T2DM. Both AGEs and high glucose triggered cellular damage, increased oxidative stress, as well as displayed a decreased survival rate along with TH secretion in the Nthy-ori 3-1 cells. Moreover, AGEs and high glucose also led to RAGE upregulation, both SIRT1 and NRF2 downregulation, and the decreased expression of TH secretion–related proteins in Nthy-ori 3-1 cells. Notably, these alternations induced by the AGEs can be reserved by silencing RAGE or upregulating either SIRT1 or Nrf2, indicating a mechanism of regulating TH secretion through the SIRT1/Nrf2 pathway. Collectively, our data proposed that AGEs and high glucose exerted a potent effect on cellular damage and TH deficiency in Nthy-ori 3-1 cells through the RAGE upregulation as well as SIRT1/Nrf2 pathway inactivation. This mechanism may underlie the occurrence of DM-hypothyroidism.  相似文献   

11.
Triosephosphate isomerase deficiency is associated with the accumulation of dihydroxyacetonephosphate (DHAP) to abnormally high levels, congenital haemolytic anaemia and a clinical syndrome of progressive neuromuscular degeneration leading to infant mortality. DHAP degrades spontaneously to methylglyoxal (MG)--a potent precursor of advanced glycation endproducts (AGEs). MG is detoxified to D-lactate intracellularly by the glyoxalase system. We investigated the changes in MG metabolism and markers of protein glycation, oxidation and nitrosation in a Hungarian family with two germline identical brothers, compound heterozygotes for triosephosphate isomerase deficiency, one with clinical manifestations of chronic neurodegeneration and the other neurologically intact. The concentration of MG and activity of glyoxalase I in red blood cells (RBCs) were increased, and the concentrations of D-lactate in blood plasma and D-lactate urinary excretion were also increased markedly in the propositus. There were concomitant increases in MG-derived AGEs and the oxidative marker dityrosine in hemoglobin. Smaller and nonsignificant increases were found in the neurologically unaffected brother and parents. There was a marked increase (15-fold) in urinary excretion of the nitrosative stress marker 3-nitrotyrosine in the propositus. The increased derangement of MG metabolism and associated glycation, oxidative and nitrosative stress in the propositus may be linked to neurodegenerative process in triosephosphate isomerase deficiency.  相似文献   

12.
Excessive formation of advanced glycation end-products (AGEs) presents the most important mechanism of metabolic memory that underlies the pathophysiology of chronic diabetic complications. Independent of the level of hyperglycaemia, AGEs mediate intracellular glycation of the mitochondrial respiratory chain proteins leading to excessive production of reactive oxygen species (ROS) and amplification of their formation. Additionally, AGEs trigger intracellular damage via activation of the receptor for AGEs (RAGE) signalling axis that leads to elevation of cytosolic ROS, nuclear factor kappaB (NF-κB) activation, increased expression of adhesion molecules and cytokines, induction of oxidative and endoplasmic reticulum stress. Recent studies have identified novel microRNAs (miRNAs) involved in the regulation of AGE/RAGE signalling in the context of diabetic micro- and macrovascular complications. The aim of this review is to discuss the emerging role of miRNAs on AGE/RAGE pathway and the potential use of several miRNAs as novel therapeutic targets.  相似文献   

13.
Glycative stress, caused by the accumulation of cytotoxic and irreversibly-formed sugar-derived advanced glycation end-products (AGEs), contributes to morbidity associated with aging, age-related diseases, and metabolic diseases. In this review, we summarize pathways leading to formation of AGEs, largely from sugars and glycolytic intermediates, and discuss detoxification of AGE precursors, including the glyoxalase system and DJ-1/Park7 deglycase. Disease pathogenesis downstream of AGE accumulation can be cell autonomous due to aggregation of glycated proteins and impaired protein function, which occurs in ocular cataracts. Extracellular AGEs also activate RAGE signaling, leading to oxidative stress, inflammation, and leukostasis in diabetic complications such as diabetic retinopathy. Pharmaceutical agents have been tested in animal models and clinically to diminish glycative burden. We summarize existing strategies and point out several new directions to diminish glycative stress including: plant-derived polyphenols as AGE inhibitors and glyoxalase inducers; improved dietary patterns, particularly Mediterranean and low glycemic diets; and enhancing proteolytic capacities of the ubiquitin-proteasome and autophagy pathways that are involved in cellular clearing of AGEs.  相似文献   

14.
Advanced glycation end products (AGE) are involved in the alterations of renal mesangial cell (MCs) growth, a feature of early stages of diabetic nephropathy (DN). We postulate that morroniside and loganin, 2 components extracted from Cornus officinalis, may ameliorate the detrimental effects of AGE-induced MCs proliferation by preventing oxidative stress. Rat MCs cultured in AGE milieu were treated with morroniside and loganin. Results showed that morroniside and loganin inhibited AGE-induced MC proliferation as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Fluorescence microscopy revealed that the morroniside and loganin improved the morphological changes of MCs. Flow cytometric analysis showed that morroniside and loganin inhibited the cell cycle of rat MCs. Furthermore, the level of reactive oxygen species was significantly reduced, and the activities of superoxide dismutase and glutathione peroxidase were markedly increased, whereas the level of malondialdehyde was not significantly reduced. These results suggest that morroniside and loganin regulate MC growth by preventing oxidative stress. Thus, this study provides a molecular basis for the use of morroniside and loganin in the early stages of DN.  相似文献   

15.
The advanced stage of the glycation process (also called the "Maillard reaction") that leads to the formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. AGEs elicit a wide range of cell-mediated responses that might contribute to diabetic complications, vascular disease, renal disease, and Alzheimer's disease. Recently, it has been proposed that AGE are not only created from glucose per se, but also from dicarbonyl compounds derived from glycation, sugar autoxidation, and sugar metabolism. However, this advanced stage of glycation is still only partially characterized and the structures of the different AGEs that are generated in vivo have not been completely determined. Because of their heterogeneity and the complexity of the chemical reactions involved, only some AGEs have been characterized in vivo, including N-carboxymethyllysine (CML), pentosidine, pyrraline, and crosslines. In this article, we provide a brief overview of the pathways of AGE formation and of the immunochemical methods for detection of AGEs, and we also provide direct immunological evidence for the existence of five distinct AGE classes (designated as AGE-1 to -5) within the AGE-modified proteins and peptides in the serum of diabetic patients on hemodialysis. We also propose pathways for the in vivo formation of various AGEs by glycation, sugar autoxidation, and sugar metabolism.  相似文献   

16.
The exact pathophysiology of non-alcoholic steatohepatitis (NASH) is not known. Previous studies suggest that dietary advanced glycation end products (AGEs) can cause oxidative stress in liver. We aim to study the effects of dietary AGEs on liver health and their possible role in the pathogenesis of NASH. METHODS: Two groups of mice were fed the same diet except the AGE content varied. One group was fed a high AGE diet and the second group was fed a regular AGE diet. Liver histology, alanine aminotransferase, aspartate aminotransferase, fasting glucose, fasting insulin, insulin resistance and glucose tolerance were assessed. RESULTS: Histology revealed that neutrophil infiltration occurred in the livers of the high AGE group at week 26; steatosis did not accompany liver inflammation. At week 39 livers from both groups exhibited macro- or micro-steatosis, yet no inflammation was detected. Higher insulin levels were detected in the regular AGE group at week 26 (P = 0.034), compared to the high AGE group. At week 39, the regular AGE group showed higher levels of alanine aminotransferase (P<0.01) and aspartate aminotransferase (P = 0.02) than those of the high AGE group. CONCLUSIONS: We demonstrate that a high AGE diet can cause liver inflammation in the absence of steatosis. Our results show that dietary AGEs could play a role in initiating liver inflammation contributing to the disease progression of NASH. Our observation that the inflammation caused by high AGE alone did not persist suggests interesting future directions to investigate how AGEs contribute to pro-oxidative and anti-oxidative pathways in the liver.  相似文献   

17.
J Liu  TC Mak  A Banigesh  K Desai  R Wang  L Wu 《PloS one》2012,7(7):e41495
We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG) formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs), oxidative stress and cellular dysfunction. High glucose (25 mM) incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose) and aldolase B (a key enzyme that catalyzes MG formation from fructose) and enhanced MG formation in human umbilical vein endothelial cells (HUVECs) and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM) and MG (30, 100 μM) increased the formation of N(ε)-carboxyethyl-lysine (CEL, a MG-induced AGE), oxidative stress (determined by the generation of oxidized DCF, H(2)O(2), protein carbonyls and 8-oxo-dG), O-GlcNAc modification (product of the hexosamine pathway), membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger) or alagebrium (an AGEs breaker). In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.  相似文献   

18.
Advanced glycation end products (AGEs) are produced by the non-enzymatic glycation of proteins and lipids. AGE levels are pathologically elevated in a number of inflammatory diseases and in diabetes mellitus. There is evidence that AGEs, acting through the receptor for AGEs, contribute to diabetic complications. Nephropathy is a major complication of diabetes mellitus. However, the initiating molecular events that trigger diabetic renal disease are unknown. Renal mesangial cells produce excess extracellular matrix in response to treatment with transforming growth factor-beta, and excess mesangial cell matrix production, by impairing glomerular filtration, contributes to diabetic nephropathy. AGEs are known to trigger the autocrine production and release of transforming growth factor-beta. However, it is unclear how AGEs signal in mesangial cells. Here we show that treatment of mesangial cells with AGEs and with the receptor for AGEs agonist S100 triggers activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) pathways. AGEs trigger the GTP loading of mesangial cell Ras, and AGE activation of ERK requires Ras. We observe that Ki-Ras, but not Ha-Ras, is the target of AGE action. Surprisingly, inhibition of PI3K blocks both ERK and Ki-Ras activation. We also observe that activation of ERK and the PI3K target kinase protein kinase-B is blocked with free radical scavengers, indicating a role for reactive oxygen species in AGE recruitment of PI3K. Thus, AGEs signal to Ki-Ras and ERK through reactive oxygen species-dependent activation of PI3K.  相似文献   

19.
The influence of advanced glycation end products (AGEs) on apoptotic cell death and vascular endothelial growth factor (VEGF) gene expression in cultured bovine retinal pericytes was investigated. When pericytes were incubated with three immunochemically distinct AGEs, which were prepared in vitro by incubating bovine serum albumin with glucose, glyceraldehyde, or glycolaldehyde, apoptotic cell death and DNA ladder formation were significantly induced. The cytopathic effects of glyceraldehyde- or glycolaldehyde-derived AGEs were significantly enhanced in AGE receptor-transfected pericytes. Furthermore, all of these AGEs were found to upregulate the secretory forms of VEGF mRNA levels in retinal pericytes. These results suggest that AGEs disturbed retinal microvascular homeostasis by inducing pericyte apoptosis and VEGF overproduction and thus were involved in the pathogenesis of early phase diabetic retinopathy.  相似文献   

20.
Type 2 diabetes mellitus (T2DM) is regarded as one of the serious risk factors for age‐related cognitive impairment; however, a causal link between these two diseases has so far not been established. It was recently discovered that, apart from high D‐glucose levels, T2DM patients also display abnormally high concentrations of uric D‐ribose. Here, we show for the first time that the administration of D‐ribose, the most active glycator among monosaccharides, produces high levels of advanced glycation end products (AGEs) and, importantly, triggers hyperphosphorylation of Tau in the brain of C57BL/6 mouse and neuroblastoma N2a cells. However, the administration of D‐glucose showed no significant changes in Tau phosphorylation under the same experimental conditions. Crucially, suppression of AGE formation using an AGEs inhibitor (aminoguanidine) effectively prevents hyperphosphorylation of Tau protein. Further study shows AGEs resulted from ribosylation activate calcium‐/calmodulin‐dependent protein kinase type II (CaMKII), a key kinase responsible for Tau hyperphosphorylation. These data suggest that there is indeed a mechanistic link between ribosylation and Tau hyperphosphorylation. Targeting ribosylation by inhibiting AGE formation may be a promising therapeutic strategy to prevent Alzheimer's disease‐like Tau hyperphosphorylation and diabetic encephalopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号