首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Rab proteins are key regulators of intracellular trafficking between specific compartments in a cell. Among them, Rab11, a widely conserved sub-group, mainly regulates plasma membrane (PM) trafficking. Previously, we reported that Oryza sativa Rab11 (OsRab11) plays an important role in the intracellular trafficking from the trans-Golginetwork (TGN) to the plasma membrane (PM) and prevacuolar compartments (PVCs), and in the plant’s response to high salt stress. In this study, when the constitutively active mutant of OsRab11, (CA OsRab11(Q73L)) was co-transformed with Arabidopsis Ca2+-ATPase8-GFP (ACA8-GFP) or sporamin-GFP (Spo-GFP) into Arabidopsis protoplasts, the PM or vacuolar trafficking proportion of the reporter proteins was highly increased. Transgenic Arabidopsis plants overexpressing (OE) CA OsRab11(Q73L) exhibited enhanced tolerance to high salt stress and exogenous abscisic acid (ABA) compared to Col plants. Moreover, certain stress-responsive genes were expressed under high salt stress and ABA treatment in OEOsRab11(Q73L) plants. Thus, these results suggest that the active conformation of OsRab11 may be required to modulate plant responses to salt and ABA via the regulation of the expression of stress-responsive genes.  相似文献   

2.
Summary Abscisic acid (ABA) has been implicated as a regulatory factor in plant cold acclimation. In the present work, the cold-acclimation properties of an ABA-deficient mutant (aba) of Arabidopsis thaliana (L.) Heynh. were analyzed. The mutant had apparently lost its capability to cold acclimate: the freezing tolerance of the mutant was not increased by low temperature treatment but stayed at the level of the nonacclimated wild type. The mutational defect could be complemented by the addition of exogenous ABA to the growth medium, restoring freezing tolerance close to the wild-type level. This suggests that ABA might have a central regulatory function in the development of freezing tolerance in plants. Cold acclimation has been previously correlated to the induction of a specific set of proteins that have been suggested to have a role in freezing tolerance. However, these proteins were also induced in the aba mutant by low temperature treatment.  相似文献   

3.
Levels of endogenous glycine betaine in the leaves were measured in response to cold acclimation, water stress and exogenous ABA application in Arabidopsis thaliana. The endogenous glycine betaine level in the leaves increased sharply during cold acclimation treatment as plants gained freezing tolerance. When glycine betaine (10 mM) was applied exogenously to the plants as a foliar spray, the freezing tolerance increased from -3.1 to -4.5 degrees C. In addition, when ABA (1 mM) was applied exogenously, the endogenous glycine betaine level and the freezing tolerance in the leaves increased. However, the increase in the leaf glycine betaine level induced by ABA was only about half of that by the cold acclimation treatment. Furthermore, when plants were subjected to water stress (leaf water potential of approximately -1.6 MPa), the endogenous leaf glycine betaine level increased by about 18-fold over that in the control plants. Water stress lead to significant increase in the freezing tolerance, which was slightly less than that induced by the cold acclimation treatment. The results suggest that glycine betaine is involved in the induction of freezing tolerance in response to cold acclimation, ABA, and water stress in Arabidopsis plants.  相似文献   

4.
5.
6.
Two related protein phosphatases 2C, ABI1 and AtPP2CA have been implicated as negative regulators of ABA signalling. In this study we characterized the role of AtPP2CA in cold acclimation. The pattern of expression of AtPP2CA and ABI1 was studied in different tissues and in response to abiotic stresses. The expression of both AtPP2CA and ABI1 was induced by low temperature, drought, high salt and ABA. The cold and drought-induced expression of these genes was ABA-dependent, but divergent in various ABA signalling mutants. In addition, the two PP2C genes exhibited differences in their tissue-specific expression as well as in temporal induction in response to low temperature. To elucidate the function of AtPP2CA in cold acclimation further, the corresponding gene was silenced by antisense inhibition. Transgenic antisense plants exhibited clearly accelerated development of freezing tolerance. Both exposure to low temperature and application of ABA resulted in enhanced freezing tolerance in antisense plants. These plants displayed increased sensitivity to ABA both during development of frost tolerance and during seed germination, but not in their drought responses. Furthermore, the expression of cold-and ABA-induced genes was enhanced in transgenic antisense plants. Our results suggest that AtPP2CA is a negative regulator of ABA responses during cold acclimation.  相似文献   

7.
In many woody plants photoperiod signals the initiation of dormancy and cold acclimation. The photoperiod-specific physiological and molecular mechanisms have remained uncharacterised. The role of abscisic acid (ABA) and dehydrins in photope-riod-induced dormancy and freezing tolerance was investigated in birch, Betula pubescens Ehrh. The experiments were designed to investigate if development of dormancy and freezing tolerance under long-day (LD) and short-day (SD) conditions could be affected by manipulation of the endogenous ABA content, and if accumulation of dehydrin-like proteins was correlated with SD and/or the water content of the buds. Experimentally, the internal ABA content was increased by ABA application and by water stress treatment under LD, and decreased by blocking the synthesis of ABA with fluridone under SD. Additionally, high humidity (95% RH) was applied to establish if accidental water stress was involved in SD. ABA content was monitored by gas chromatography-mass spectrometry with selective ion monitoring (SIM). Short days induced a transient increase in ABA content, which was absent in 95% RH, whereas fluridone treatment decreased ABA. Short days induced a typical pattern of bud desiccation and growth cessation regardless of the treatment, and improved freezing tolerance except in the fluridone treatment. ABA content of the buds was significantly increased after spraying ABA on leaves and after water stress, treatments that did not induce cessation of growth and dormancy, but improved freezing tolerance. In addition to several constitutively produced dehydrins, two SD-specific proteins of molecular masses 34 and 36 kDa were found. Photoperiod- and experimentally-induced alterations in ABA contents affected freezing tolerance but not cessation of growth and dormancy. Therefore, involvement of ABA in the photoperiodic control of cold acclimation is more direct than in growth cessation and dormancy. As the typical desiccation pattern of the buds was found in all SD plants, and was not directly related to ABA content or to freezing tolerance, this pattern characterises the onset of photo-period-induced growth cessation and dormancy. The results provide evidence for the existence of various constitutively and two photoperiod-induced dehydrins in buds of birch, and reveal characteristics of dormancy and freezing tolerance that may facilitate further investigations of photoperiodic control of growth in trees.  相似文献   

8.
9.
10.
EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is rapidly induced in response to various abiotic and biotic stress stimuli in Arabidopsis (Arabidopsis thaliana). Modulation of ERD15 levels by overexpression or RNAi silencing altered the responsiveness of the transgenic plants to the phytohormone abscisic acid (ABA). Overexpression of ERD15 reduced the ABA sensitivity of Arabidopsis manifested in decreased drought tolerance and in impaired ability of the plants to increase their freezing tolerance in response to this hormone. In contrast, RNAi silencing of ERD15 resulted in plants that were hypersensitive to ABA and showed improved tolerance to both drought and freezing, as well as impaired seed germination in the presence of ABA. The modulation of ERD15 levels not only affected abiotic stress tolerance but also disease resistance: ERD15 overexpression plants showed improved resistance to the bacterial necrotroph Erwinia carotovora subsp. carotovora accompanied with enhanced induction of marker genes for systemic acquired resistance. We propose that ERD15 is a novel mediator of stress-related ABA signaling in Arabidopsis.  相似文献   

11.
Optical isomers and racemic mixtures of abscisic acid (ABA) and the ABA metabolites abscisyl alcohol (ABA alc), abscisyl aldehyde (ABA ald), phaseic acid (PA), and 7[prime]hydroxyABA (7[prime]OHABA) were studied to determine their effects on freezing tolerance and gene expression in bromegrass (Bromus inermis Leyss) cell-suspension cultures. A dihydroABA analog (DHABA) series that cannot be converted to PA was also investigated. Racemic ABA, (+)-ABA, ([plus or minus])-DHABA, and (+)-DHABA were the most active in inducing freezing tolerance, (-)-ABA, ([plus or minus])-7[prime]OHBA, (-)-DHABA, ([plus or minus])-ABA ald, and ([plus or minus])-ABA alc had a moderate effect, and PA was inactive. If the relative cellular water content decreased below 82%, dehydrin gene expression increased. Except for (-)-ABA, increased expression of dehydrin genes and increased accumulation of responsive to ABA (RAB) proteins were linked to increased levels of frost tolerance. PA had no effect on the induction of RAB proteins; however, ([plus or minus])- and (+)-DHABA were both active, which suggests that PA is not involved in freezing tolerance. Both (+)-ABA and (-)-ABA induced dehydrin genes and the accumulation of RAB proteins to similar levels, but (-)-ABA was less effective than (+)-ABA at increasing freezing tolerance. The (-)-DHABA analog was inactive, implying that the ring double bond is necessary in the (-) isomers for activating an ABA response.  相似文献   

12.
13.
Abscisic acid (ABA)-induced genes are implicated in the development of freezing tolerance during cold acclimation in higher plants, but their roles in lower land plants have not been determined. We examined ABA- and cold-induced changes in freezing tolerance and gene expression in the moss Physcomitrella patens. Slow equilibrium freezing to -4 degrees C of P. patens protonemata grown under normal growth conditions killed more than 90% of the cells, indicating that the protonema cells are freezing-sensitive. ABA treatment for 24 h dramatically increased the freezing tolerance of the protonemata, while cold treatment only slightly increased the freezing tolerance within the same period. We examined the expressions of fourteen Physcomitrella patens ABA-responsive genes (PPARs), isolated from ABA-treated protonemata. ABA treatment resulted in a remarkable increase in the expression of all the PPAR genes within 24 h. Several of the PPAR genes (PPAR 1 to 8, and 14) were also responsive to cold, but the response was much slower than that to ABA. Treatment with hyperosmotic concentrations of NaCl and mannitol increased freezing tolerance of protonemata and also increased the expression levels of eleven PPAR genes (PPAR2, 3, 5 to 8, and 10 to 14). These results suggest that ABA and environmental stresses positively affect the expression of common genes that participate in protection of protonema cells leading to the development of freezing tolerance.  相似文献   

14.
To shed light on the early protein phosphorylation events involved in plant cell signaling in response to environmental stresses, we studied changes in the phosphorylation status of the Arabidopsis cell suspension proteome after short-term low temperature and abscisic acid (ABA) treatment. We used radioactive pulse-labeling of Arabidopsis cell suspension cultures and two-dimensional (2-D) gel electrophoresis to identify proteins that are differentially phosphorylated in response to these treatments. Changes in the phosphorylation levels of several proteins were detected in response to short-term (5 min or less) cold (4°C) and chilling (12°C) stress and ABA treatment, and we observed that some of these changes were common between these treatments. In addition, we used Pro-Q Diamond phosphoprotein gel stain to study the steady-state protein phosphorylation status under the same treatments. We demonstrated that Pro-Q Diamond effectively stained phosphorylated proteins, however, the overall Pro-Q Diamond 2-D gel staining pattern of proteins extracted from low-temperature and ABA-treated cells was not consistent with the gel patterns obtained by in vivo radioactive labeling of phosphoproteins. These in vivo pulsed-labeling experiments demonstrate that the Arabidopsis phosphoproteome is dynamic in response to short-term low temperature and ABA treatment, and thus represents a strategy for the identification of signaling proteins that could be utilized in the production of chilling or freeze tolerant crop varieties.  相似文献   

15.
16.
The induction of freezing tolerance by abscisic acid (ABA) or cold treatment in suspension cultured cells of Solanum commersonii was studied. Both ABA (50–100 μ M ) at 23°C and low temperature (4°C) increased freezing tolerance in cultured Solanum commersonii cells from a LT50 (freezing temperature at which 50% cells were killed) of —5°C (control) to —11.5°C in 2 days. Cold-induced freezing tolerance reached its maximum at 2 days and remained constant throughout the cold acclimation period of 11 days. The freezing tolerance induced by ABA, however, showed a rapid decline 2 to 5 days after initiation of ABA treatments. Addition of ABA (100 μ M ) to the culture medium at the inception of low temperature treatment did not enhance freezing tolerance of the cells beyond the level attainable by either treatment singly. Poly(A+)-RNA was isolated from the respective treatments, translated in a rabbit reticulocyte lysate cell free system, and the translation products were resolved by two dimensional polyacrylamide gel electrophoresis (ID-PAGE). Analysis of the in vitro translated products revealed changes in the abundance of approximately 26 products (encoding for polypeptides with M, of 14 to 69 kDa and pl of 4.90 to 6.60) in ABA-treated cells 12 h after treatment, and 20 (encoding for polypeptides with Mr of 12 to 69 kDa, with pl of 4.80 to 6.42) in cells exposed to 4°C for 12 h. There were only 5 novel translation products observed when the ABA-treated cells reached the highest level of freezing tolerance (2 days after the initiation of ABA treatment). Changes in translatable RNA populations during the induction of freezing tolerance in cells treated with either ABA or low temperature are discussed.  相似文献   

17.
Hydrated leaves of the resurrection grass S.stapfianus Gandoger are not desiccation tolerant, but tolerance can be induced in them by moderate to severe drought stress. When brassinolide (BR) and methyljasmonic acid (MJA) were applied separately, each improved PDT by approximately 6 MPa. Exogenous abscisic acid (ABA) improved the protoplasmic drought tolerance (PDT) of suspended cells from hydrated leaves of S. stapfianus only slightly (about 1 MPa).BR, MJA or ABA treatment of leaves on fully hydrated S. stapfianus plants induced changes in the leaf protein complement (partitioned by 2-D PAG electrophoresis), with the induction of apparently novel proteins and increased and decreased abundances of other proteins. Most of the changes that were induced by MJA differed from those produced by ABA and also by BR. Two proteins increased in abundance after treatment of leaves with MJA, BR or ABA.  相似文献   

18.
Mosses are known to have the ability to develop high degrees of resistance to desiccation and freezing stress at cellular levels. However, underlying cellular mechanisms leading to the development of stress resistance in mosses are not understood. We previously showed that freezing tolerance in protonema cells of the moss Physcomitrella patens was rapidly increased by exogenous application of the stress hormone abscisic acid (ABA) [Minami, A., Nagao, M., Arakawa, K., Fujikawa, S., Takezawa, D., 2003a. Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J. Plant Physiol. 160, 475-483]. Herein it is shown that protonema cells with acquired freezing tolerance specifically accumulate low-molecular-weight soluble sugars. Analysis of the most abundant trisaccharide revealed that the cells accumulated theanderose (G6-alpha-glucosyl sucrose) in close association with enhancement of freezing tolerance by ABA treatment. The accumulation of theanderose was inhibited by cycloheximide, an inhibitor of nuclear-encoded protein synthesis, coinciding with a remarkable decrease in freezing tolerance. Furthermore, theanderose accumulation was promoted by cold acclimation and treatment with hyperosmotic solutes, both of which had been shown to enhance cellular freezing tolerance. These results reveal a novel role for theanderose, whose biological function has been obscure, in high freezing tolerance in moss cells.  相似文献   

19.
Treatments as diverse as exposure to low temperature (LT), exogenous abscisic acid (ABA), or drought resulted in a 4 to 5[deg]C increase in freezing tolerance of the annual herbaceous plant Arabidopsis thaliana. To correlate the increase in freezing tolerance with the physiological changes that occur in response to these treatments, we studied the alterations in water status, endogenous ABA levels, and accumulation of rab18 (V. Lang and E.T. Palva [1992] Plant Mol Biol 20: 951-962) mRNA. Exposure to LT and exogenous ABA caused only a minor decline in total water potential ([psi]w), in contrast to a dramatic decrease in [psi]w during drought stress. Similarly, the endogenous ABA levels were only slightly and transiently increased in LT-treated plants in contrast to a massive increase in ABA levels in drought-stressed plants. The expression of the ABA-responsive rab18 gene was low during the LT treatment but could be induced to high levels by exogenous ABA and drought stress. Taken together, these results suggest that the moderate increases in freezing tolerance of A. thaliana might be achieved by different mechanisms. However, ABA-deficient and ABA-insensitive mutants of A. thaliana have impaired freezing tolerance, suggesting that ABA is, at least indirectly, required for the development of full freezing tolerance.  相似文献   

20.
To investigate the molecular mechanisms controlling the process of cold acclimation and to identify genes involved in plant freezing tolerance, mutations that impaired the cold acclimation capability of Arabidopsis thaliana (L.) Heynh. were screened for. A new mutation, frs1 (freezing sensitive 1), that reduced both the constitutive freezing tolerance as well as the freezing tolerance of Arabidopsis after cold acclimation was characterized. This mutation also produced a wilty phenotype and excessive water loss. Plants with the frs1 mutation recovered their wild-type phenotype, their capability to tolerate freezing temperatures and their capability to retain water after an exogenous abscisic acid (ABA) treatment. Measurements of ABA revealed that frs1 mutants were ABA deficient, and complementation tests indicated that frs1 mutation was a new allele of the ABA3 locus showing that a mutation in this locus leads to an impairment of freezing tolerance. These results constitute the first report showing that a mutation in ABA3 leads to an impairment of freezing tolerance, and not only strengthen the conclusion that ABA is required for full development of freezing tolerance in cold-acclimated plants, but also demonstrate that ABA mediates the constitutive freezing tolerance of Arabidopsis. Gene expression in frs1 mutants was altered in response to dehydration, suggesting that freezing tolerance in Arabidopsis depends on ABA-regulated proteins that allow plants to survive the challenges imposed by subzero temperatures, mainly freeze-induced cellular dehydration. Received: 16 December 1999 / Accepted: 31 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号