首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drug extrusion via efflux through a tripartite complex (an inner membrane pump, an outer membrane protein, and a periplasmic protein) is a widely used mechanism in Gram-negative bacteria. The outer membrane protein (TolC in Escherichia coli; OprM in Pseudomonas aeruginosa) forms a tunnel-like pore through the periplasmic space and the outer membrane. Molecular dynamics simulations of TolC have been performed, and are compared to simulations of Y362F/R367S mutant, and to simulations of its homolog OprM. The results reveal a complex pattern of conformation dynamics in the TolC protein. Two putative gate regions, located at either end of the protein, can be distinguished. These regions are the extracellular loops and the mouth of the periplasmic domain, respectively. The periplasmic gate has been implicated in the conformational changes leading from the closed x-ray structure to a proposed open state of TolC. Between the two gates, a peristaltic motion of the periplasmic domain is observed, which may facilitate transport of the solutes from one end of the tunnel to the other. The motions observed in the atomistic simulations are also seen in coarse-grained simulations in which the protein tertiary structure is represented by an elastic network model.  相似文献   

2.
The periplasmic entrance of the TolC channel tunnel is sealed by close-packing of inner and outer coiled-coils, and it has been proposed that opening of the entrance is achieved by an iris-like realignment of the inner coiled-coils. This is supported by experimental disruption of the key links connecting them, which effects transition to the open state in TolC inserted into planar lipid bilayers. Here we provide in vivo evidence for this "twist to open" mechanism by constraining the coiled coils with disulphide bonds, either self-locking or bridged by a chemical cross-linker, and reconstituting the resulting TolC variants into the type I protein export system in Escherichia coli. Introducing an intermonomer disulphide bridge between Ala159 and Ser350 caused a fivefold reduction in export, and when the coiled coils were cross-linked at the entrance constriction, between Asp374 of adjacent monomers or between Asn156 and Ala375, TolC-dependent export was abolished. In vivo cross-linking showed that the locked non-exporting TolC variants were still recruited to assemble the type I export apparatus. The data show that untwisting the entrance helices is essential for the export function of TolC in E.coli, specifically to allow access and passage of substrates engaged at the inner membrane translocase.  相似文献   

3.
Outer membrane protein TolC serves as an exit duct for exporting substances out of cell. The occluded periplasmic entrance of TolC is required to open for substrate transport, although the opening mechanism remains elusive. In this study, systematic molecular dynamics (MD) simulations for wild type TolC and six mutants were performed to explore the conformational dynamics of TolC. The periplasmic gate was shown to sample multiple conformational states with various degrees of gating opening. The gate opening was facilitated by all mutations except Y362F, which adopts an even more closed state than wild type TolC. The interprotomer salt‐bridge R367–D153 is turned out to be crucial for periplasmic gate opening. The mutations that disrupt the interactions at the periplasmic tip may affect the stability of the trimeric assembly of TolC. Structural asymmetry of the periplasmic gate was observed to be opening size dependent. Asymmetric conformations are found in moderately opening states, while the most and the least opening states are often more symmetric. Finally, it is shown that lowering pH can remarkably stabilize the closed state of the periplasmic gate. Proteins 2014; 82:2169–2179. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
TolC--the bacterial exit duct for proteins and drugs   总被引:1,自引:0,他引:1  
Koronakis V 《FEBS letters》2003,555(1):66-71
The TolC structure has unveiled a common mechanism for the movement of molecules, large and small, from the bacterial cell cytosol, across two membranes and the intervening periplasm, into the environment. Trimeric TolC is a remarkable cell exit duct that differs radically from other membrane proteins, comprising a 100-A long alpha-barrel that projects across the periplasmic space, anchored by a 40-A long beta-barrel spanning the outer membrane. The periplasmic entrance of TolC is closed until recruitment by substrate-specific translocases in the inner membrane triggers its transition to the open state, achieved by an iris-like 'untwisting' of the tunnel alpha-helices. TolC-dependent machineries present ubiquitous exit routes for virulence proteins and antibacterial drugs, and their conserved structure, specifically the electronegative TolC entrance constriction, may present a target for inhibitors of multidrug-resistant pathogens.  相似文献   

5.
The trimeric TolC protein of Escherichia coli comprises an outer membrane beta-barrel and a contiguous alpha-helical barrel projecting across the periplasm. This provides a single 140 A long pore for multidrug efflux and protein export. We have previously reported that trivalent cations such as hexammine cobalt can severely inhibit the conductivity of the TolC pore reconstituted in planar lipid bilayers. Here, isothermal calorimetry shows that Co(NH(3))(6)(3+) binds to TolC with an affinity of 20 nM. The crystal structure of the TolC-Co(NH(3))(6)(3+) complex was determined to 2.75 A resolution, and showed no significant difference in the protein when compared with unliganded TolC. An electron density difference map revealed that a single ligand molecule binds at the centre of the periplasmic entrance, the sole constriction of TolC. The octahedral symmetry of the ligand and the three-fold rotational symmetry of the TolC entrance determine a binding site in which the ligand forms hydrogen bonds with the Asp(374) residue of each monomer. When Asp(374) was substituted by alanine, high affinity ligand binding was abolished and inhibition of TolC pore conductivity in lipid bilayers was alleviated. Comparable effects followed independent substitution of the neighbouring Asp(371), indicating that this aspartate ring also contributes to the high affinity ligand binding site. As the electronegative entrance is widely conserved in the TolC family, it may be a useful target for the development of inhibitors against multidrug resistant pathogenic bacteria.  相似文献   

6.
Escherichia coli TolC assembles into the unique channel-tunnel structure spanning the outer membrane and periplasmic space. The structure is constricted only at the periplasmic entrance of the tunnel and this must be opened to allow export of substrates bound by cognate inner membrane complexes. We have investigated the electrophysiological behavior of TolC reconstituted into planar lipid bilayers, in particular the influence of the membrane potential, the electrolyte concentration and pH. TolC inserted in one orientation into the membrane. The resultant pores were stable and showed no voltage-dependent opening or closing. Nevertheless, TolC could adopt up to three conductance substates. The pores were cation-selective with a permeability ratio of potassium to chloride ions of 16.5. The single-channel conductance was higher when the protein was inserted from the side with negative potential. It showed a nonlinear dependence on the concentration of the electrolyte in the bulk solution and decreased as the pH was lowered. The calculated pK of the apparent closing was 4.5. The electrophysiological characterization is discussed in relation to the TolC structure, in particular the periplasmic entrance.  相似文献   

7.
Channel-tunnels   总被引:1,自引:0,他引:1  
TolC and its many homologues comprise an alpha-helical transperiplasmic tunnel embedded in the bacterial outer membrane by a contiguous beta-barrel channel, providing a large exit duct for diverse substrates. The 'channel-tunnel' is closed at its periplasmic entrance, but can be opened by an 'iris-like' mechanism when recruited by substrate-engaged proteins in the cytosolic membrane.  相似文献   

8.
For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 ? into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system. Electronic Publication  相似文献   

9.
TolC is an outer membrane porin protein and an essential component of drug efflux and type-I secretion systems in Gram-negative bacteria. TolC comprises a periplasmic alpha- helical barrel domain and a membrane-embedded beta-barrel domain. TdeA, a functional and structural homolog of TolC, is required for toxin and drug export in the pathogenic oral bacterium Actinobacillus actinomycetemcomitans. Here, we report the expression of the periplasmic domain of TdeA as a soluble protein by substitution of the membraneembedded domain with short linkers, which enabled us to purify the protein in the absence of detergent. We confirmed the structural integrity of the TdeA periplasmic domain by size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy, which together showed that the periplasmic domain of the TolC protein family can fold correctly on its own. We further demonstrated that the periplasmic domain of TdeA interacts with peptidoglycans of the bacterial cell wall, which supports the idea that completely folded TolC family proteins traverse the peptidoglycan layer to interact with inner membrane transporters.  相似文献   

10.
TolC is an outer membrane protein required for the export of virulence proteins and toxic compounds without a periplasmic intermediate. We show that TolC is an integral part of the translocator, interacting with inner membrane components, by demonstrating a need for TolC in protein export not only from intact cells but also from sphaeroplasts. To establish the structure of TolC, and thus gain information on how this might be achieved, the protein was purified from the Escherichia coli outer membrane, as a trimer, and crystallized in two-dimensional lattices by reconstitution in phospholipid bilayers. The projection structure at 12 Å resolution showed a threefold symmetric molecule of 58 Å outer diameter, and a single pool of stain filling its centre. Side views parallel to the membrane plane revealed an additional domain outside the membrane. Eighteen membrane-spanning β-strands were predicted for the 51.5 kDa monomer, excluding a 7 kDa C-terminal segment, and this segment was shown to contain a proteinase K-sensitive site that was exposed in reconstituted membranes and sphaeroplasts, but which was protected in intact cells. The combined data suggest that TolC is a trimeric outer membrane protein with each monomer comprising a membrane domain, predicted to be β-barrel, and a C-terminal periplasmic domain. The latter could form part of the bridge to the energized inner membrane component of the translocation complex.  相似文献   

11.
Chunnel vision. Export and efflux through bacterial channel-tunnels   总被引:9,自引:0,他引:9  
The Escherichia coli TolC protein is central to toxin export and drug efflux across the inner and outer cell membranes and the intervening periplasmic space. The crystal structure has revealed that TolC assembles into a remarkable α-helical trans-periplasmic cylinder (tunnel) embedded in the outer membrane by a contiguous β-barrel (channel), so providing a large duct open to the outside environment. The channel-tunnel structure is conserved in TolC homologues throughout Gram-negative bacteria, and it is envisaged that they are recruited and opened, through a common mechanism, by substrate-specific inner-membrane complexes.  相似文献   

12.
Bacterial multidrug efflux pumps operate by periplasmic recruitment and opening of TolC family outer membrane exit ducts by cognate inner membrane translocases. Directed evolution of active hybrid pumps was achieved by challenging a library of mutated, shuffled TolC variants to adapt to the non-cognate Pseudomonas MexAB translocase, and confer resistance to the efflux substrate novobiocin. Amino acid substitutions in MexAB-adapted TolC variants that endowed high resistance were recreated independently, and revealed that MexAB-adaptation was conferred only by substitutions located in the lower alpha-helical barrel of TolC, specifically the periplasmic equatorial domain and entrance coiled coils. These changes converge to the native MexAB partner OprM, and indicate an interface key to the function and diversity of efflux pumps.  相似文献   

13.
Drugs and certain proteins are transported across the membranes of Gram-negative bacteria by energy-activated pumps. The outer membrane component of these pumps is a channel that opens from a sealed resting state during the transport process. We describe two crystal structures of the Escherichia coli outer membrane protein TolC in its partially open state. Opening is accompanied by the exposure of three shallow intraprotomer grooves in the TolC trimer, where our mutagenesis data identify a contact point with the periplasmic component of a drug efflux pump, AcrA. We suggest that the assembly of multidrug efflux pumps is accompanied by induced fit of TolC driven mainly by accommodation of the periplasmic component.  相似文献   

14.
Bacterial multidrug resistance is a serious clinical problem and is commonly conferred by tripartite efflux 'pumps' in the prokaryotic cell envelope. Crystal structures of the three components of a drug efflux pump have now been solved: the outer membrane TolC exit duct in the year 2000, the inner membrane AcrB antiporter in 2002 and the periplasmic adaptor MexA in 2004. These structures have enhanced our understanding of the principles underlying pump assembly and operation, and present pumps as new drug targets.  相似文献   

15.
Escherichia coli MacAB-TolC is a tripartite macrolide efflux transporter driven by hydrolysis of ATP. In this complex, MacA is the periplasmic membrane fusion protein that stimulates the activity of MacB transporter and establishes the link with the outer membrane channel TolC. The molecular mechanism by which MacA stimulates MacB remains unknown. Here, we report that the periplasmic membrane proximal domain of MacA plays a critical role in functional MacA-MacB interactions and stimulation of MacB ATPase activity. Binding of MacA to MacB stabilizes the ATP-bound conformation of MacB, whereas interactions with both MacB and TolC affect the conformation of MacA. A single G353A substitution in the C-terminus of MacA inactivates MacAB-TolC function by changing the conformation of the membrane proximal domain of MacA and disrupting the proper assembly of the MacA-MacB complex. We propose that MacA acts in transport by promoting MacB transition into the closed ATP-bound conformation and in this respect, is similar to the periplasmic solute-binding proteins.  相似文献   

16.
The major Escherichia coli multidrug efflux pump AcrAB-TolC expels a wide range of antibacterial agents. Using in vivo cross-linking, we show for the first time that the antiporter AcrB and the adaptor AcrA, which form a translocase in the inner membrane, interact with the outer membrane TolC exit duct to form a contiguous proteinaceous complex spanning the bacterial cell envelope. Assembly of the pump appeared to be constitutive, occurring in the presence and absence of drug efflux substrate. This contrasts with substrate-induced assembly of the closely related TolC-dependent protein export machinery, possibly reflecting different assembly dynamics and degrees of substrate responsiveness in the two systems. TolC could be cross-linked independently to AcrB, showing that their large periplasmic domains are in close proximity. However, isothermal titration calorimetry detected no interaction between the purified AcrB and TolC proteins, suggesting that the adaptor protein is required for their stable association in vivo. Confirming this view, AcrA could be cross-linked independently to AcrB and TolC in vivo, and calorimetry demonstrated energetically favourable interactions of AcrA with both AcrB and TolC proteins. AcrB was bound by a polypeptide spanning the C-terminal half of AcrA, but binding to TolC required interaction of N- and C-terminal polypeptides spanning the lipoyl-like domains predicted to present the intervening coiled-coil to the periplasmic coils of TolC. These in vivo and in vitro analyses establish the central role of the AcrA adaptor in drug-independent assembly of the tripartite drug efflux pump, specifically in coupling the inner membrane transporter and the outer membrane exit duct.  相似文献   

17.
VceC is the outer membrane component of the major facilitator (MF) VceAB-VceC multiple-drug-resistant (MDR) efflux pump of Vibrio cholerae. TolC is the outer membrane component of the resistance-nodulation-division AcrAB-TolC efflux pump of Escherichia coli. Although these proteins share little amino acid sequence identity, their crystal structures can be readily superimposed upon one another. In this study, we have asked if TolC and VceC are interchangeable for the functioning of the AcrAB and VceAB pumps. We have found that TolC can replace VceC to form a functional VceAB-TolC MDR pump, but VceC cannot replace TolC to form a functional AcrAB-VceC pump. However, we have been able to isolate gain-of-function (gof) VceC mutants which can functionally interface with AcrAB. These mutations map to four different amino acids located at the periplasmic tip of VceC. Chemical cross-linkage experiments indicate that both wild-type and gof mutant VceC can physically interact with the AcrAB complex, suggesting that these gof mutations are not affecting the recruitment of VceC to the AcrAB complex but rather its ability to functionally interface with the AcrAB pump.  相似文献   

18.
The recent crystal structure of TolC elegantly indicates its function and provides insight into its mechanism for export of a wide range of molecules across the periplasmic space and outer membrane of Gram-negative bacteria. The structure is compared to those of other proteins that are embedded in bacterial outer membranes or that traverse the periplasmic space.  相似文献   

19.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

20.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号